1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
/*
* (C) 2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_PK_OPERATION_IMPL_H__
#define BOTAN_PK_OPERATION_IMPL_H__
#include <botan/pk_ops.h>
namespace Botan {
namespace PK_Ops {
class Encryption_with_EME : public Encryption
{
public:
size_t max_input_bits() const override;
secure_vector<byte> encrypt(const byte msg[], size_t msg_len,
RandomNumberGenerator& rng) override;
~Encryption_with_EME();
protected:
Encryption_with_EME(const std::string& eme);
private:
virtual size_t max_raw_input_bits() const = 0;
virtual secure_vector<byte> raw_encrypt(const byte msg[], size_t len,
RandomNumberGenerator& rng) = 0;
std::unique_ptr<EME> m_eme;
};
class Decryption_with_EME : public Decryption
{
public:
size_t max_input_bits() const override;
secure_vector<byte> decrypt(const byte msg[], size_t msg_len) override;
~Decryption_with_EME();
protected:
Decryption_with_EME(const std::string& eme);
private:
virtual size_t max_raw_input_bits() const = 0;
virtual secure_vector<byte> raw_decrypt(const byte msg[], size_t len) = 0;
std::unique_ptr<EME> m_eme;
};
class Verification_with_EMSA : public Verification
{
public:
void update(const byte msg[], size_t msg_len) override;
bool is_valid_signature(const byte sig[], size_t sig_len) override;
bool do_check(const secure_vector<byte>& msg,
const byte sig[], size_t sig_len);
protected:
Verification_with_EMSA(const std::string& emsa);
~Verification_with_EMSA();
/**
* @return boolean specifying if this key type supports message
* recovery and thus if you need to call verify() or verify_mr()
*/
virtual bool with_recovery() const = 0;
/*
* Perform a signature check operation
* @param msg the message
* @param msg_len the length of msg in bytes
* @param sig the signature
* @param sig_len the length of sig in bytes
* @returns if signature is a valid one for message
*/
virtual bool verify(const byte[], size_t,
const byte[], size_t)
{
throw Invalid_State("Message recovery required");
}
/*
* Perform a signature operation (with message recovery)
* Only call this if with_recovery() returns true
* @param msg the message
* @param msg_len the length of msg in bytes
* @returns recovered message
*/
virtual secure_vector<byte> verify_mr(const byte[], size_t)
{
throw Invalid_State("Message recovery not supported");
}
private:
std::unique_ptr<EMSA> m_emsa;
};
class Signature_with_EMSA : public Signature
{
public:
void update(const byte msg[], size_t msg_len) override;
secure_vector<byte> sign(RandomNumberGenerator& rng) override;
protected:
Signature_with_EMSA(const std::string& emsa);
~Signature_with_EMSA();
private:
/**
* Get the maximum message size in bits supported by this public key.
* @return maximum message in bits
*/
virtual size_t max_input_bits() const = 0;
bool self_test_signature(const std::vector<byte>& msg,
const std::vector<byte>& sig) const;
virtual secure_vector<byte> raw_sign(const byte msg[], size_t msg_len,
RandomNumberGenerator& rng) = 0;
std::unique_ptr<EMSA> m_emsa;
};
class Key_Agreement_with_KDF : public Key_Agreement
{
public:
secure_vector<byte> agree(size_t key_len,
const byte other_key[], size_t other_key_len,
const byte salt[], size_t salt_len) override;
protected:
Key_Agreement_with_KDF(const std::string& kdf);
~Key_Agreement_with_KDF();
private:
virtual secure_vector<byte> raw_agree(const byte w[], size_t w_len) = 0;
std::unique_ptr<KDF> m_kdf;
};
class KEM_Encryption_with_KDF : public KEM_Encryption
{
public:
void kem_encrypt(secure_vector<byte>& out_encapsulated_key,
secure_vector<byte>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const uint8_t salt[],
size_t salt_len) override;
protected:
virtual void raw_kem_encrypt(secure_vector<byte>& out_encapsulated_key,
secure_vector<byte>& raw_shared_key,
Botan::RandomNumberGenerator& rng) = 0;
KEM_Encryption_with_KDF(const std::string& kdf);
~KEM_Encryption_with_KDF();
private:
std::unique_ptr<KDF> m_kdf;
};
class KEM_Decryption_with_KDF : public KEM_Decryption
{
public:
secure_vector<byte> kem_decrypt(const byte encap_key[],
size_t len,
size_t desired_shared_key_len,
const uint8_t salt[],
size_t salt_len) override;
protected:
virtual secure_vector<byte>
raw_kem_decrypt(const byte encap_key[], size_t len) = 0;
KEM_Decryption_with_KDF(const std::string& kdf);
~KEM_Decryption_with_KDF();
private:
std::unique_ptr<KDF> m_kdf;
};
}
}
#endif
|