1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/*
* PK Operation Types
* (C) 2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/pk_ops_impl.h>
#include <botan/eme.h>
#include <botan/kdf.h>
#include <botan/emsa.h>
#include <botan/internal/bit_ops.h>
namespace Botan {
PK_Ops::Encryption_with_EME::Encryption_with_EME(const std::string& eme)
{
m_eme.reset(get_eme(eme));
if(!m_eme.get())
throw Algorithm_Not_Found(eme);
}
PK_Ops::Encryption_with_EME::~Encryption_with_EME() {}
size_t PK_Ops::Encryption_with_EME::max_input_bits() const
{
return m_eme->maximum_input_size(max_raw_input_bits());
}
secure_vector<byte> PK_Ops::Encryption_with_EME::encrypt(const byte msg[], size_t msg_len,
RandomNumberGenerator& rng)
{
const size_t max_raw = max_raw_input_bits();
const std::vector<byte> encoded = unlock(m_eme->encode(msg, msg_len, max_raw, rng));
if(8*(encoded.size() - 1) + high_bit(encoded[0]) > max_raw)
throw Exception("Input is too large to encrypt with this key");
return raw_encrypt(encoded.data(), encoded.size(), rng);
}
PK_Ops::Decryption_with_EME::Decryption_with_EME(const std::string& eme)
{
m_eme.reset(get_eme(eme));
if(!m_eme.get())
throw Algorithm_Not_Found(eme);
}
PK_Ops::Decryption_with_EME::~Decryption_with_EME() {}
size_t PK_Ops::Decryption_with_EME::max_input_bits() const
{
return m_eme->maximum_input_size(max_raw_input_bits());
}
secure_vector<byte> PK_Ops::Decryption_with_EME::decrypt(const byte msg[], size_t length)
{
return m_eme->decode(raw_decrypt(msg, length), max_raw_input_bits());
}
PK_Ops::Key_Agreement_with_KDF::Key_Agreement_with_KDF(const std::string& kdf)
{
if(kdf != "Raw")
m_kdf.reset(get_kdf(kdf));
}
PK_Ops::Key_Agreement_with_KDF::~Key_Agreement_with_KDF() {}
secure_vector<byte> PK_Ops::Key_Agreement_with_KDF::agree(size_t key_len,
const byte w[], size_t w_len,
const byte salt[], size_t salt_len)
{
secure_vector<byte> z = raw_agree(w, w_len);
if(m_kdf)
return m_kdf->derive_key(key_len, z, salt, salt_len);
return z;
}
PK_Ops::Signature_with_EMSA::Signature_with_EMSA(const std::string& emsa)
{
m_emsa.reset(get_emsa(emsa));
if(!m_emsa)
throw Algorithm_Not_Found(emsa);
}
PK_Ops::Signature_with_EMSA::~Signature_with_EMSA() {}
void PK_Ops::Signature_with_EMSA::update(const byte msg[], size_t msg_len)
{
m_emsa->update(msg, msg_len);
}
secure_vector<byte> PK_Ops::Signature_with_EMSA::sign(RandomNumberGenerator& rng)
{
const secure_vector<byte> msg = m_emsa->raw_data();
const auto padded = m_emsa->encoding_of(msg, this->max_input_bits(), rng);
return raw_sign(padded.data(), padded.size(), rng);
}
PK_Ops::Verification_with_EMSA::Verification_with_EMSA(const std::string& emsa)
{
m_emsa.reset(get_emsa(emsa));
if(!m_emsa)
throw Algorithm_Not_Found(emsa);
}
PK_Ops::Verification_with_EMSA::~Verification_with_EMSA() {}
void PK_Ops::Verification_with_EMSA::update(const byte msg[], size_t msg_len)
{
m_emsa->update(msg, msg_len);
}
bool PK_Ops::Verification_with_EMSA::is_valid_signature(const byte sig[], size_t sig_len)
{
const secure_vector<byte> msg = m_emsa->raw_data();
if(with_recovery())
{
secure_vector<byte> output_of_key = verify_mr(sig, sig_len);
return m_emsa->verify(output_of_key, msg, max_input_bits());
}
else
{
Null_RNG rng;
secure_vector<byte> encoded = m_emsa->encoding_of(msg, max_input_bits(), rng);
return verify(encoded.data(), encoded.size(), sig, sig_len);
}
}
void PK_Ops::KEM_Encryption_with_KDF::kem_encrypt(secure_vector<byte>& out_encapsulated_key,
secure_vector<byte>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const uint8_t salt[],
size_t salt_len)
{
secure_vector<byte> raw_shared;
this->raw_kem_encrypt(out_encapsulated_key, raw_shared, rng);
out_shared_key = m_kdf->derive_key(desired_shared_key_len,
raw_shared.data(), raw_shared.size(),
salt, salt_len);
}
PK_Ops::KEM_Encryption_with_KDF::KEM_Encryption_with_KDF(const std::string& kdf)
{
m_kdf.reset(get_kdf(kdf));
}
PK_Ops::KEM_Encryption_with_KDF::~KEM_Encryption_with_KDF() {}
secure_vector<byte>
PK_Ops::KEM_Decryption_with_KDF::kem_decrypt(const byte encap_key[],
size_t len,
size_t desired_shared_key_len,
const uint8_t salt[],
size_t salt_len)
{
secure_vector<byte> raw_shared = this->raw_kem_decrypt(encap_key, len);
return m_kdf->derive_key(desired_shared_key_len,
raw_shared.data(), raw_shared.size(),
salt, salt_len);
}
PK_Ops::KEM_Decryption_with_KDF::KEM_Decryption_with_KDF(const std::string& kdf)
{
m_kdf.reset(get_kdf(kdf));
}
PK_Ops::KEM_Decryption_with_KDF::~KEM_Decryption_with_KDF() {}
}
|