1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/*
* PKCS #5 PBES2
* (C) 1999-2008,2014 Jack Lloyd
* (C) 2018 Ribose Inc
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pbes2.h>
#include <botan/cipher_mode.h>
#include <botan/pbkdf.h>
#include <botan/pwdhash.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/parsing.h>
#include <botan/alg_id.h>
#include <botan/oids.h>
#include <botan/rng.h>
#if defined(BOTAN_HAS_SCRYPT)
#include <botan/scrypt.h>
#endif
namespace Botan {
namespace {
bool known_pbes_cipher_mode(const std::string& mode)
{
return (mode == "CBC" || mode == "GCM" || mode == "SIV");
}
SymmetricKey derive_key(const std::string& passphrase,
const AlgorithmIdentifier& kdf_algo,
size_t default_key_size)
{
if(kdf_algo.get_oid() == OID::from_string("PKCS5.PBKDF2"))
{
secure_vector<uint8_t> salt;
size_t iterations = 0, key_length = 0;
AlgorithmIdentifier prf_algo;
BER_Decoder(kdf_algo.get_parameters())
.start_cons(SEQUENCE)
.decode(salt, OCTET_STRING)
.decode(iterations)
.decode_optional(key_length, INTEGER, UNIVERSAL)
.decode_optional(prf_algo, SEQUENCE, CONSTRUCTED,
AlgorithmIdentifier("HMAC(SHA-160)",
AlgorithmIdentifier::USE_NULL_PARAM))
.end_cons();
if(salt.size() < 8)
throw Decoding_Error("PBE-PKCS5 v2.0: Encoded salt is too small");
if(key_length == 0)
key_length = default_key_size;
const std::string prf = OIDS::oid2str_or_throw(prf_algo.get_oid());
std::unique_ptr<PBKDF> pbkdf(get_pbkdf("PBKDF2(" + prf + ")"));
return pbkdf->pbkdf_iterations(key_length, passphrase, salt.data(), salt.size(), iterations);
}
#if defined(BOTAN_HAS_SCRYPT)
else if(kdf_algo.get_oid() == OID::from_string("Scrypt"))
{
secure_vector<uint8_t> salt;
size_t N = 0, r = 0, p = 0;
size_t key_length = 0;
AlgorithmIdentifier prf_algo;
BER_Decoder(kdf_algo.get_parameters())
.start_cons(SEQUENCE)
.decode(salt, OCTET_STRING)
.decode(N)
.decode(r)
.decode(p)
.decode_optional(key_length, INTEGER, UNIVERSAL)
.end_cons();
if(key_length == 0)
key_length = default_key_size;
secure_vector<uint8_t> output(key_length);
scrypt(output.data(), output.size(), passphrase,
salt.data(), salt.size(), N, r, p);
return SymmetricKey(output);
}
#endif
else
throw Decoding_Error("PBE-PKCS5 v2.0: Unknown KDF algorithm " +
kdf_algo.get_oid().to_string());
}
secure_vector<uint8_t> derive_key(const std::string& passphrase,
const std::string& digest,
RandomNumberGenerator& rng,
size_t* msec_in_iterations_out,
size_t iterations_if_msec_null,
size_t key_length,
AlgorithmIdentifier& kdf_algo)
{
const secure_vector<uint8_t> salt = rng.random_vec(12);
if(digest == "Scrypt")
{
#if defined(BOTAN_HAS_SCRYPT)
std::unique_ptr<PasswordHashFamily> pwhash_fam = PasswordHashFamily::create_or_throw("Scrypt");
std::unique_ptr<PasswordHash> pwhash;
if(msec_in_iterations_out)
{
const std::chrono::milliseconds msec(*msec_in_iterations_out);
pwhash = pwhash_fam->tune(key_length, msec);
}
else
{
pwhash = pwhash_fam->from_iterations(iterations_if_msec_null);
}
secure_vector<uint8_t> key(key_length);
pwhash->derive_key(key.data(), key.size(),
passphrase.c_str(), passphrase.size(),
salt.data(), salt.size());
const size_t N = pwhash->memory_param();
const size_t r = pwhash->iterations();
const size_t p = pwhash->parallelism();
if(msec_in_iterations_out)
*msec_in_iterations_out = 0;
std::vector<uint8_t> scrypt_params;
DER_Encoder(scrypt_params)
.start_cons(SEQUENCE)
.encode(salt, OCTET_STRING)
.encode(N)
.encode(r)
.encode(p)
.encode(key_length)
.end_cons();
kdf_algo = AlgorithmIdentifier(OID::from_string("Scrypt"), scrypt_params);
return key;
#else
throw Not_Implemented("Scrypt is not available in this build");
#endif
}
else
{
const std::string prf = "HMAC(" + digest + ")";
const std::string pbkdf_name = "PBKDF2(" + prf + ")";
std::unique_ptr<PasswordHashFamily> pwhash_fam = PasswordHashFamily::create(pbkdf_name);
if(!pwhash_fam)
throw Invalid_Argument("Unknown password hash digest " + digest);
std::unique_ptr<PasswordHash> pwhash;
if(msec_in_iterations_out)
{
const std::chrono::milliseconds msec(*msec_in_iterations_out);
pwhash = pwhash_fam->tune(key_length, msec);
}
else
{
pwhash = pwhash_fam->from_iterations(iterations_if_msec_null);
}
secure_vector<uint8_t> key(key_length);
pwhash->derive_key(key.data(), key.size(),
passphrase.c_str(), passphrase.size(),
salt.data(), salt.size());
std::vector<uint8_t> pbkdf2_params;
const size_t iterations = pwhash->iterations();
if(msec_in_iterations_out)
*msec_in_iterations_out = iterations;
DER_Encoder(pbkdf2_params)
.start_cons(SEQUENCE)
.encode(salt, OCTET_STRING)
.encode(iterations)
.encode(key_length)
.encode_if(prf != "HMAC(SHA-160)",
AlgorithmIdentifier(prf, AlgorithmIdentifier::USE_NULL_PARAM))
.end_cons();
kdf_algo = AlgorithmIdentifier("PKCS5.PBKDF2", pbkdf2_params);
return key;
}
}
/*
* PKCS#5 v2.0 PBE Encryption
*/
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_shared(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
size_t* msec_in_iterations_out,
size_t iterations_if_msec_null,
const std::string& cipher,
const std::string& prf,
RandomNumberGenerator& rng)
{
const std::vector<std::string> cipher_spec = split_on(cipher, '/');
if(cipher_spec.size() != 2)
throw Encoding_Error("PBE-PKCS5 v2.0: Invalid cipher spec " + cipher);
if(!known_pbes_cipher_mode(cipher_spec[1]))
throw Encoding_Error("PBE-PKCS5 v2.0: Don't know param format for " + cipher);
const OID cipher_oid = OIDS::str2oid_or_empty(cipher);
if(cipher_oid.empty())
throw Encoding_Error("PBE-PKCS5 v2.0: No OID assigned for " + cipher);
std::unique_ptr<Cipher_Mode> enc = Cipher_Mode::create(cipher, ENCRYPTION);
if(!enc)
throw Decoding_Error("PBE-PKCS5 cannot encrypt no cipher " + cipher);
const size_t key_length = enc->key_spec().maximum_keylength();
const secure_vector<uint8_t> iv = rng.random_vec(enc->default_nonce_length());
AlgorithmIdentifier kdf_algo;
const secure_vector<uint8_t> derived_key =
derive_key(passphrase, prf, rng,
msec_in_iterations_out, iterations_if_msec_null,
key_length, kdf_algo);
enc->set_key(derived_key);
enc->start(iv);
secure_vector<uint8_t> ctext = key_bits;
enc->finish(ctext);
std::vector<uint8_t> pbes2_params;
DER_Encoder(pbes2_params)
.start_cons(SEQUENCE)
.encode(kdf_algo)
.encode(
AlgorithmIdentifier(cipher,
DER_Encoder().encode(iv, OCTET_STRING).get_contents_unlocked()
)
)
.end_cons();
AlgorithmIdentifier id(OID::from_string("PBE-PKCS5v20"), pbes2_params);
return std::make_pair(id, unlock(ctext));
}
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
std::chrono::milliseconds msec,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
size_t msec_in_iterations_out = static_cast<size_t>(msec.count());
return pbes2_encrypt_shared(key_bits, passphrase, &msec_in_iterations_out, 0, cipher, digest, rng);
// return value msec_in_iterations_out discarded
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_msec(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
std::chrono::milliseconds msec,
size_t* out_iterations_if_nonnull,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
size_t msec_in_iterations_out = static_cast<size_t>(msec.count());
auto ret = pbes2_encrypt_shared(key_bits, passphrase, &msec_in_iterations_out, 0, cipher, digest, rng);
if(out_iterations_if_nonnull)
*out_iterations_if_nonnull = msec_in_iterations_out;
return ret;
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_iter(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
size_t pbkdf_iter,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
return pbes2_encrypt_shared(key_bits, passphrase, nullptr, pbkdf_iter, cipher, digest, rng);
}
secure_vector<uint8_t>
pbes2_decrypt(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
const std::vector<uint8_t>& params)
{
AlgorithmIdentifier kdf_algo, enc_algo;
BER_Decoder(params)
.start_cons(SEQUENCE)
.decode(kdf_algo)
.decode(enc_algo)
.end_cons();
const std::string cipher = OIDS::oid2str_or_throw(enc_algo.get_oid());
const std::vector<std::string> cipher_spec = split_on(cipher, '/');
if(cipher_spec.size() != 2)
throw Decoding_Error("PBE-PKCS5 v2.0: Invalid cipher spec " + cipher);
if(!known_pbes_cipher_mode(cipher_spec[1]))
throw Decoding_Error("PBE-PKCS5 v2.0: Don't know param format for " + cipher);
secure_vector<uint8_t> iv;
BER_Decoder(enc_algo.get_parameters()).decode(iv, OCTET_STRING).verify_end();
std::unique_ptr<Cipher_Mode> dec = Cipher_Mode::create(cipher, DECRYPTION);
if(!dec)
throw Decoding_Error("PBE-PKCS5 cannot decrypt no cipher " + cipher);
dec->set_key(derive_key(passphrase, kdf_algo, dec->key_spec().maximum_keylength()));
dec->start(iv);
secure_vector<uint8_t> buf = key_bits;
dec->finish(buf);
return buf;
}
}
|