1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
/*
* NEWHOPE Ring-LWE scheme
* Based on the public domain reference implementation by the
* designers (https://github.com/tpoeppelmann/newhope)
*
* Further changes
* (C) 2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/newhope.h>
#include <botan/keccak.h>
#include <botan/loadstor.h>
namespace Botan {
typedef newhope_poly poly;
// Don't change this :)
#define PARAM_Q 12289
#define PARAM_N 1024
#define NEWHOPE_POLY_BYTES 1792
#define NEWHOPE_SEED_BYTES 32
#define SHAKE128_RATE 168
namespace {
/* Incomplete-reduction routines; for details on allowed input ranges
* and produced output ranges, see the description in the paper:
* https://cryptojedi.org/papers/#newhope */
inline uint16_t montgomery_reduce(uint32_t a)
{
const uint32_t qinv = 12287; // -inverse_mod(p,2^18)
const uint32_t rlog = 18;
uint32_t u;
u = (a * qinv);
u &= ((1<<rlog)-1);
u *= PARAM_Q;
a = a + u;
return a >> 18;
}
inline uint16_t barrett_reduce(uint16_t a)
{
uint32_t u;
u = ((uint32_t) a * 5) >> 16;
u *= PARAM_Q;
a -= u;
return a;
}
inline void mul_coefficients(uint16_t* poly, const uint16_t* factors)
{
unsigned int i;
for(i = 0; i < PARAM_N; i++)
poly[i] = montgomery_reduce((poly[i] * factors[i]));
}
/* GS_bo_to_no; omegas need to be in Montgomery domain */
inline void ntt(uint16_t * a, const uint16_t* omega)
{
int i, start, j, jTwiddle, distance;
uint16_t temp, W;
for(i=0;i<10;i+=2)
{
// Even level
distance = (1<<i);
for(start = 0; start < distance;start++)
{
jTwiddle = 0;
for(j=start;j<PARAM_N-1;j+=2*distance)
{
W = omega[jTwiddle++];
temp = a[j];
a[j] = (temp + a[j + distance]); // Omit reduction (be lazy)
a[j + distance] = montgomery_reduce((W * ((uint32_t)temp + 3*PARAM_Q - a[j + distance])));
}
}
// Odd level
distance <<= 1;
for(start = 0; start < distance;start++)
{
jTwiddle = 0;
for(j=start;j<PARAM_N-1;j+=2*distance)
{
W = omega[jTwiddle++];
temp = a[j];
a[j] = barrett_reduce((temp + a[j + distance]));
a[j + distance] = montgomery_reduce((W * ((uint32_t)temp + 3*PARAM_Q - a[j + distance])));
}
}
}
}
inline void poly_frombytes(poly *r, const unsigned char *a)
{
int i;
for(i=0;i<PARAM_N/4;i++)
{
r->coeffs[4*i+0] = a[7*i+0] | (((uint16_t)a[7*i+1] & 0x3f) << 8);
r->coeffs[4*i+1] = (a[7*i+1] >> 6) | (((uint16_t)a[7*i+2]) << 2) | (((uint16_t)a[7*i+3] & 0x0f) << 10);
r->coeffs[4*i+2] = (a[7*i+3] >> 4) | (((uint16_t)a[7*i+4]) << 4) | (((uint16_t)a[7*i+5] & 0x03) << 12);
r->coeffs[4*i+3] = (a[7*i+5] >> 2) | (((uint16_t)a[7*i+6]) << 6);
}
}
inline void poly_tobytes(unsigned char *r, const poly *p)
{
int i;
uint16_t t0,t1,t2,t3,m;
int16_t c;
for(i=0;i<PARAM_N/4;i++)
{
t0 = barrett_reduce(p->coeffs[4*i+0]); //Make sure that coefficients have only 14 bits
t1 = barrett_reduce(p->coeffs[4*i+1]);
t2 = barrett_reduce(p->coeffs[4*i+2]);
t3 = barrett_reduce(p->coeffs[4*i+3]);
m = t0 - PARAM_Q;
c = m;
c >>= 15;
t0 = m ^ ((t0^m)&c); // <Make sure that coefficients are in [0,q]
m = t1 - PARAM_Q;
c = m;
c >>= 15;
t1 = m ^ ((t1^m)&c); // <Make sure that coefficients are in [0,q]
m = t2 - PARAM_Q;
c = m;
c >>= 15;
t2 = m ^ ((t2^m)&c); // <Make sure that coefficients are in [0,q]
m = t3 - PARAM_Q;
c = m;
c >>= 15;
t3 = m ^ ((t3^m)&c); // <Make sure that coefficients are in [0,q]
r[7*i+0] = t0 & 0xff;
r[7*i+1] = (t0 >> 8) | (t1 << 6);
r[7*i+2] = (t1 >> 2);
r[7*i+3] = (t1 >> 10) | (t2 << 4);
r[7*i+4] = (t2 >> 4);
r[7*i+5] = (t2 >> 12) | (t3 << 2);
r[7*i+6] = (t3 >> 6);
}
}
inline void poly_getnoise(Botan::RandomNumberGenerator& rng, poly *r)
{
unsigned char buf[4*PARAM_N];
uint32_t *tp, t,d, a, b;
int i,j;
// Not an endian problem because this is just used for RNG output
// Is an endian problem for tests
tp = (uint32_t *) buf;
rng.randomize(buf, 4*PARAM_N);
for(i=0;i<PARAM_N;i++)
{
t = tp[i];
d = 0;
for(j=0;j<8;j++)
d += (t >> j) & 0x01010101;
a = ((d >> 8) & 0xff) + (d & 0xff);
b = (d >> 24) + ((d >> 16) & 0xff);
r->coeffs[i] = a + PARAM_Q - b;
}
}
inline void poly_pointwise(poly *r, const poly *a, const poly *b)
{
int i;
uint16_t t;
for(i=0;i<PARAM_N;i++)
{
t = montgomery_reduce(3186*b->coeffs[i]); /* t is now in Montgomery domain */
r->coeffs[i] = montgomery_reduce(a->coeffs[i] * t); /* r->coeffs[i] is back in normal domain */
}
}
inline void poly_add(poly *r, const poly *a, const poly *b)
{
int i;
for(i=0;i<PARAM_N;i++)
r->coeffs[i] = barrett_reduce(a->coeffs[i] + b->coeffs[i]);
}
inline void poly_ntt(poly *r)
{
static const uint16_t omegas_montgomery[PARAM_N/2] = {4075,6974,7373,7965,3262,5079,522,2169,6364,1018,1041,8775,2344,11011,5574,1973,4536,1050,6844,3860,3818,6118,2683,1190,4789,7822,7540,6752,5456,4449,3789,12142,11973,382,3988,468,6843,5339,6196,3710,11316,1254,5435,10930,3998,10256,10367,3879,11889,1728,6137,4948,5862,6136,3643,6874,8724,654,10302,1702,7083,6760,56,3199,9987,605,11785,8076,5594,9260,6403,4782,6212,4624,9026,8689,4080,11868,6221,3602,975,8077,8851,9445,5681,3477,1105,142,241,12231,1003,3532,5009,1956,6008,11404,7377,2049,10968,12097,7591,5057,3445,4780,2920,7048,3127,8120,11279,6821,11502,8807,12138,2127,2839,3957,431,1579,6383,9784,5874,677,3336,6234,2766,1323,9115,12237,2031,6956,6413,2281,3969,3991,12133,9522,4737,10996,4774,5429,11871,3772,453,5908,2882,1805,2051,1954,11713,3963,2447,6142,8174,3030,1843,2361,12071,2908,3529,3434,3202,7796,2057,5369,11939,1512,6906,10474,11026,49,10806,5915,1489,9789,5942,10706,10431,7535,426,8974,3757,10314,9364,347,5868,9551,9634,6554,10596,9280,11566,174,2948,2503,6507,10723,11606,2459,64,3656,8455,5257,5919,7856,1747,9166,5486,9235,6065,835,3570,4240,11580,4046,10970,9139,1058,8210,11848,922,7967,1958,10211,1112,3728,4049,11130,5990,1404,325,948,11143,6190,295,11637,5766,8212,8273,2919,8527,6119,6992,8333,1360,2555,6167,1200,7105,7991,3329,9597,12121,5106,5961,10695,10327,3051,9923,4896,9326,81,3091,1000,7969,4611,726,1853,12149,4255,11112,2768,10654,1062,2294,3553,4805,2747,4846,8577,9154,1170,2319,790,11334,9275,9088,1326,5086,9094,6429,11077,10643,3504,3542,8668,9744,1479,1,8246,7143,11567,10984,4134,5736,4978,10938,5777,8961,4591,5728,6461,5023,9650,7468,949,9664,2975,11726,2744,9283,10092,5067,12171,2476,3748,11336,6522,827,9452,5374,12159,7935,3296,3949,9893,4452,10908,2525,3584,8112,8011,10616,4989,6958,11809,9447,12280,1022,11950,9821,11745,5791,5092,2089,9005,2881,3289,2013,9048,729,7901,1260,5755,4632,11955,2426,10593,1428,4890,5911,3932,9558,8830,3637,5542,145,5179,8595,3707,10530,355,3382,4231,9741,1207,9041,7012,1168,10146,11224,4645,11885,10911,10377,435,7952,4096,493,9908,6845,6039,2422,2187,9723,8643,9852,9302,6022,7278,1002,4284,5088,1607,7313,875,8509,9430,1045,2481,5012,7428,354,6591,9377,11847,2401,1067,7188,11516,390,8511,8456,7270,545,8585,9611,12047,1537,4143,4714,4885,1017,5084,1632,3066,27,1440,8526,9273,12046,11618,9289,3400,9890,3136,7098,8758,11813,7384,3985,11869,6730,10745,10111,2249,4048,2884,11136,2126,1630,9103,5407,2686,9042,2969,8311,9424,9919,8779,5332,10626,1777,4654,10863,7351,3636,9585,5291,8374,2166,4919,12176,9140,12129,7852,12286,4895,10805,2780,5195,2305,7247,9644,4053,10600,3364,3271,4057,4414,9442,7917,2174};
static const uint16_t psis_bitrev_montgomery[PARAM_N] = {4075,6974,7373,7965,3262,5079,522,2169,6364,1018,1041,8775,2344,11011,5574,1973,4536,1050,6844,3860,3818,6118,2683,1190,4789,7822,7540,6752,5456,4449,3789,12142,11973,382,3988,468,6843,5339,6196,3710,11316,1254,5435,10930,3998,10256,10367,3879,11889,1728,6137,4948,5862,6136,3643,6874,8724,654,10302,1702,7083,6760,56,3199,9987,605,11785,8076,5594,9260,6403,4782,6212,4624,9026,8689,4080,11868,6221,3602,975,8077,8851,9445,5681,3477,1105,142,241,12231,1003,3532,5009,1956,6008,11404,7377,2049,10968,12097,7591,5057,3445,4780,2920,7048,3127,8120,11279,6821,11502,8807,12138,2127,2839,3957,431,1579,6383,9784,5874,677,3336,6234,2766,1323,9115,12237,2031,6956,6413,2281,3969,3991,12133,9522,4737,10996,4774,5429,11871,3772,453,5908,2882,1805,2051,1954,11713,3963,2447,6142,8174,3030,1843,2361,12071,2908,3529,3434,3202,7796,2057,5369,11939,1512,6906,10474,11026,49,10806,5915,1489,9789,5942,10706,10431,7535,426,8974,3757,10314,9364,347,5868,9551,9634,6554,10596,9280,11566,174,2948,2503,6507,10723,11606,2459,64,3656,8455,5257,5919,7856,1747,9166,5486,9235,6065,835,3570,4240,11580,4046,10970,9139,1058,8210,11848,922,7967,1958,10211,1112,3728,4049,11130,5990,1404,325,948,11143,6190,295,11637,5766,8212,8273,2919,8527,6119,6992,8333,1360,2555,6167,1200,7105,7991,3329,9597,12121,5106,5961,10695,10327,3051,9923,4896,9326,81,3091,1000,7969,4611,726,1853,12149,4255,11112,2768,10654,1062,2294,3553,4805,2747,4846,8577,9154,1170,2319,790,11334,9275,9088,1326,5086,9094,6429,11077,10643,3504,3542,8668,9744,1479,1,8246,7143,11567,10984,4134,5736,4978,10938,5777,8961,4591,5728,6461,5023,9650,7468,949,9664,2975,11726,2744,9283,10092,5067,12171,2476,3748,11336,6522,827,9452,5374,12159,7935,3296,3949,9893,4452,10908,2525,3584,8112,8011,10616,4989,6958,11809,9447,12280,1022,11950,9821,11745,5791,5092,2089,9005,2881,3289,2013,9048,729,7901,1260,5755,4632,11955,2426,10593,1428,4890,5911,3932,9558,8830,3637,5542,145,5179,8595,3707,10530,355,3382,4231,9741,1207,9041,7012,1168,10146,11224,4645,11885,10911,10377,435,7952,4096,493,9908,6845,6039,2422,2187,9723,8643,9852,9302,6022,7278,1002,4284,5088,1607,7313,875,8509,9430,1045,2481,5012,7428,354,6591,9377,11847,2401,1067,7188,11516,390,8511,8456,7270,545,8585,9611,12047,1537,4143,4714,4885,1017,5084,1632,3066,27,1440,8526,9273,12046,11618,9289,3400,9890,3136,7098,8758,11813,7384,3985,11869,6730,10745,10111,2249,4048,2884,11136,2126,1630,9103,5407,2686,9042,2969,8311,9424,9919,8779,5332,10626,1777,4654,10863,7351,3636,9585,5291,8374,2166,4919,12176,9140,12129,7852,12286,4895,10805,2780,5195,2305,7247,9644,4053,10600,3364,3271,4057,4414,9442,7917,2174,3947,11951,2455,6599,10545,10975,3654,2894,7681,7126,7287,12269,4119,3343,2151,1522,7174,7350,11041,2442,2148,5959,6492,8330,8945,5598,3624,10397,1325,6565,1945,11260,10077,2674,3338,3276,11034,506,6505,1392,5478,8778,1178,2776,3408,10347,11124,2575,9489,12096,6092,10058,4167,6085,923,11251,11912,4578,10669,11914,425,10453,392,10104,8464,4235,8761,7376,2291,3375,7954,8896,6617,7790,1737,11667,3982,9342,6680,636,6825,7383,512,4670,2900,12050,7735,994,1687,11883,7021,146,10485,1403,5189,6094,2483,2054,3042,10945,3981,10821,11826,8882,8151,180,9600,7684,5219,10880,6780,204,11232,2600,7584,3121,3017,11053,7814,7043,4251,4739,11063,6771,7073,9261,2360,11925,1928,11825,8024,3678,3205,3359,11197,5209,8581,3238,8840,1136,9363,1826,3171,4489,7885,346,2068,1389,8257,3163,4840,6127,8062,8921,612,4238,10763,8067,125,11749,10125,5416,2110,716,9839,10584,11475,11873,3448,343,1908,4538,10423,7078,4727,1208,11572,3589,2982,1373,1721,10753,4103,2429,4209,5412,5993,9011,438,3515,7228,1218,8347,5232,8682,1327,7508,4924,448,1014,10029,12221,4566,5836,12229,2717,1535,3200,5588,5845,412,5102,7326,3744,3056,2528,7406,8314,9202,6454,6613,1417,10032,7784,1518,3765,4176,5063,9828,2275,6636,4267,6463,2065,7725,3495,8328,8755,8144,10533,5966,12077,9175,9520,5596,6302,8400,579,6781,11014,5734,11113,11164,4860,1131,10844,9068,8016,9694,3837,567,9348,7000,6627,7699,5082,682,11309,5207,4050,7087,844,7434,3769,293,9057,6940,9344,10883,2633,8190,3944,5530,5604,3480,2171,9282,11024,2213,8136,3805,767,12239,216,11520,6763,10353,7,8566,845,7235,3154,4360,3285,10268,2832,3572,1282,7559,3229,8360,10583,6105,3120,6643,6203,8536,8348,6919,3536,9199,10891,11463,5043,1658,5618,8787,5789,4719,751,11379,6389,10783,3065,7806,6586,2622,5386,510,7628,6921,578,10345,11839,8929,4684,12226,7154,9916,7302,8481,3670,11066,2334,1590,7878,10734,1802,1891,5103,6151,8820,3418,7846,9951,4693,417,9996,9652,4510,2946,5461,365,881,1927,1015,11675,11009,1371,12265,2485,11385,5039,6742,8449,1842,12217,8176,9577,4834,7937,9461,2643,11194,3045,6508,4094,3451,7911,11048,5406,4665,3020,6616,11345,7519,3669,5287,1790,7014,5410,11038,11249,2035,6125,10407,4565,7315,5078,10506,2840,2478,9270,4194,9195,4518,7469,1160,6878,2730,10421,10036,1734,3815,10939,5832,10595,10759,4423,8420,9617,7119,11010,11424,9173,189,10080,10526,3466,10588,7592,3578,11511,7785,9663,530,12150,8957,2532,3317,9349,10243,1481,9332,3454,3758,7899,4218,2593,11410,2276,982,6513,1849,8494,9021,4523,7988,8,457,648,150,8000,2307,2301,874,5650,170,9462,2873,9855,11498,2535,11169,5808,12268,9687,1901,7171,11787,3846,1573,6063,3793,466,11259,10608,3821,6320,4649,6263,2929};
mul_coefficients(r->coeffs, psis_bitrev_montgomery);
ntt((uint16_t *)r->coeffs, omegas_montgomery);
}
inline void bitrev_vector(uint16_t* poly)
{
static const uint16_t bitrev_table[1024] = {
0,512,256,768,128,640,384,896,64,576,320,832,192,704,448,960,32,544,288,800,160,672,416,928,96,608,352,864,224,736,480,992,
16,528,272,784,144,656,400,912,80,592,336,848,208,720,464,976,48,560,304,816,176,688,432,944,112,624,368,880,240,752,496,1008,
8,520,264,776,136,648,392,904,72,584,328,840,200,712,456,968,40,552,296,808,168,680,424,936,104,616,360,872,232,744,488,1000,
24,536,280,792,152,664,408,920,88,600,344,856,216,728,472,984,56,568,312,824,184,696,440,952,120,632,376,888,248,760,504,1016,
4,516,260,772,132,644,388,900,68,580,324,836,196,708,452,964,36,548,292,804,164,676,420,932,100,612,356,868,228,740,484,996,
20,532,276,788,148,660,404,916,84,596,340,852,212,724,468,980,52,564,308,820,180,692,436,948,116,628,372,884,244,756,500,1012,
12,524,268,780,140,652,396,908,76,588,332,844,204,716,460,972,44,556,300,812,172,684,428,940,108,620,364,876,236,748,492,1004,
28,540,284,796,156,668,412,924,92,604,348,860,220,732,476,988,60,572,316,828,188,700,444,956,124,636,380,892,252,764,508,1020,
2,514,258,770,130,642,386,898,66,578,322,834,194,706,450,962,34,546,290,802,162,674,418,930,98,610,354,866,226,738,482,994,
18,530,274,786,146,658,402,914,82,594,338,850,210,722,466,978,50,562,306,818,178,690,434,946,114,626,370,882,242,754,498,1010,
10,522,266,778,138,650,394,906,74,586,330,842,202,714,458,970,42,554,298,810,170,682,426,938,106,618,362,874,234,746,490,1002,
26,538,282,794,154,666,410,922,90,602,346,858,218,730,474,986,58,570,314,826,186,698,442,954,122,634,378,890,250,762,506,1018,
6,518,262,774,134,646,390,902,70,582,326,838,198,710,454,966,38,550,294,806,166,678,422,934,102,614,358,870,230,742,486,998,
22,534,278,790,150,662,406,918,86,598,342,854,214,726,470,982,54,566,310,822,182,694,438,950,118,630,374,886,246,758,502,1014,
14,526,270,782,142,654,398,910,78,590,334,846,206,718,462,974,46,558,302,814,174,686,430,942,110,622,366,878,238,750,494,1006,
30,542,286,798,158,670,414,926,94,606,350,862,222,734,478,990,62,574,318,830,190,702,446,958,126,638,382,894,254,766,510,1022,
1,513,257,769,129,641,385,897,65,577,321,833,193,705,449,961,33,545,289,801,161,673,417,929,97,609,353,865,225,737,481,993,
17,529,273,785,145,657,401,913,81,593,337,849,209,721,465,977,49,561,305,817,177,689,433,945,113,625,369,881,241,753,497,1009,
9,521,265,777,137,649,393,905,73,585,329,841,201,713,457,969,41,553,297,809,169,681,425,937,105,617,361,873,233,745,489,1001,
25,537,281,793,153,665,409,921,89,601,345,857,217,729,473,985,57,569,313,825,185,697,441,953,121,633,377,889,249,761,505,1017,
5,517,261,773,133,645,389,901,69,581,325,837,197,709,453,965,37,549,293,805,165,677,421,933,101,613,357,869,229,741,485,997,
21,533,277,789,149,661,405,917,85,597,341,853,213,725,469,981,53,565,309,821,181,693,437,949,117,629,373,885,245,757,501,1013,
13,525,269,781,141,653,397,909,77,589,333,845,205,717,461,973,45,557,301,813,173,685,429,941,109,621,365,877,237,749,493,1005,
29,541,285,797,157,669,413,925,93,605,349,861,221,733,477,989,61,573,317,829,189,701,445,957,125,637,381,893,253,765,509,1021,
3,515,259,771,131,643,387,899,67,579,323,835,195,707,451,963,35,547,291,803,163,675,419,931,99,611,355,867,227,739,483,995,
19,531,275,787,147,659,403,915,83,595,339,851,211,723,467,979,51,563,307,819,179,691,435,947,115,627,371,883,243,755,499,1011,
11,523,267,779,139,651,395,907,75,587,331,843,203,715,459,971,43,555,299,811,171,683,427,939,107,619,363,875,235,747,491,1003,
27,539,283,795,155,667,411,923,91,603,347,859,219,731,475,987,59,571,315,827,187,699,443,955,123,635,379,891,251,763,507,1019,
7,519,263,775,135,647,391,903,71,583,327,839,199,711,455,967,39,551,295,807,167,679,423,935,103,615,359,871,231,743,487,999,
23,535,279,791,151,663,407,919,87,599,343,855,215,727,471,983,55,567,311,823,183,695,439,951,119,631,375,887,247,759,503,1015,
15,527,271,783,143,655,399,911,79,591,335,847,207,719,463,975,47,559,303,815,175,687,431,943,111,623,367,879,239,751,495,1007,
31,543,287,799,159,671,415,927,95,607,351,863,223,735,479,991,63,575,319,831,191,703,447,959,127,639,383,895,255,767,511,1023
};
unsigned int i,r;
uint16_t tmp;
for(i = 0; i < PARAM_N; i++)
{
r = bitrev_table[i];
if (i < r)
{
tmp = poly[i];
poly[i] = poly[r];
poly[r] = tmp;
}
}
}
inline void poly_invntt(poly *r)
{
static const uint16_t omegas_inv_montgomery[PARAM_N/2] = {4075,5315,4324,4916,10120,11767,7210,9027,10316,6715,1278,9945,3514,11248,11271,5925,147,8500,7840,6833,5537,4749,4467,7500,11099,9606,6171,8471,8429,5445,11239,7753,9090,12233,5529,5206,10587,1987,11635,3565,5415,8646,6153,6427,7341,6152,10561,400,8410,1922,2033,8291,1359,6854,11035,973,8579,6093,6950,5446,11821,8301,11907,316,52,3174,10966,9523,6055,8953,11612,6415,2505,5906,10710,11858,8332,9450,10162,151,3482,787,5468,1010,4169,9162,5241,9369,7509,8844,7232,4698,192,1321,10240,4912,885,6281,10333,7280,8757,11286,58,12048,12147,11184,8812,6608,2844,3438,4212,11314,8687,6068,421,8209,3600,3263,7665,6077,7507,5886,3029,6695,4213,504,11684,2302,1962,1594,6328,7183,168,2692,8960,4298,5184,11089,6122,9734,10929,3956,5297,6170,3762,9370,4016,4077,6523,652,11994,6099,1146,11341,11964,10885,6299,1159,8240,8561,11177,2078,10331,4322,11367,441,4079,11231,3150,1319,8243,709,8049,8719,11454,6224,3054,6803,3123,10542,4433,6370,7032,3834,8633,12225,9830,683,1566,5782,9786,9341,12115,723,3009,1693,5735,2655,2738,6421,11942,2925,1975,8532,3315,11863,4754,1858,1583,6347,2500,10800,6374,1483,12240,1263,1815,5383,10777,350,6920,10232,4493,9087,8855,8760,9381,218,9928,10446,9259,4115,6147,9842,8326,576,10335,10238,10484,9407,6381,11836,8517,418,6860,7515,1293,7552,2767,156,8298,8320,10008,5876,5333,10258,10115,4372,2847,7875,8232,9018,8925,1689,8236,2645,5042,9984,7094,9509,1484,7394,3,4437,160,3149,113,7370,10123,3915,6998,2704,8653,4938,1426,7635,10512,1663,6957,3510,2370,2865,3978,9320,3247,9603,6882,3186,10659,10163,1153,9405,8241,10040,2178,1544,5559,420,8304,4905,476,3531,5191,9153,2399,8889,3000,671,243,3016,3763,10849,12262,9223,10657,7205,11272,7404,7575,8146,10752,242,2678,3704,11744,5019,3833,3778,11899,773,5101,11222,9888,442,2912,5698,11935,4861,7277,9808,11244,2859,3780,11414,4976,10682,7201,8005,11287,5011,6267,2987,2437,3646,2566,10102,9867,6250,5444,2381,11796,8193,4337,11854,1912,1378,404,7644,1065,2143,11121,5277,3248,11082,2548,8058,8907,11934,1759,8582,3694,7110,12144,6747,8652,3459,2731,8357,6378,7399,10861,1696,9863,334,7657,6534,11029,4388,11560,3241,10276,9000,9408,3284,10200,7197,6498,544,2468,339,11267,9,2842,480,5331,7300,1673,4278,4177,8705,9764,1381,7837,2396,8340,8993,4354,130,6915,2837,11462,5767,953,8541,9813,118,7222,2197,3006,9545,563,9314,2625,11340,4821,2639,7266,5828,6561,7698,3328,6512,1351,7311,6553,8155,1305,722,5146,4043,12288,10810,2545,3621,8747,8785,1646,1212,5860,3195,7203,10963,3201,3014,955,11499,9970,11119,3135,3712,7443,9542,7484,8736,9995,11227,1635,9521,1177,8034,140,10436,11563,7678,4320,11289,9198,12208,2963,7393,2366,9238};
static const uint16_t psis_inv_montgomery[PARAM_N] = {256,10570,1510,7238,1034,7170,6291,7921,11665,3422,4000,2327,2088,5565,795,10647,1521,5484,2539,7385,1055,7173,8047,11683,1669,1994,3796,5809,4341,9398,11876,12230,10525,12037,12253,3506,4012,9351,4847,2448,7372,9831,3160,2207,5582,2553,7387,6322,9681,1383,10731,1533,219,5298,4268,7632,6357,9686,8406,4712,9451,10128,4958,5975,11387,8649,11769,6948,11526,12180,1740,10782,6807,2728,7412,4570,4164,4106,11120,12122,8754,11784,3439,5758,11356,6889,9762,11928,1704,1999,10819,12079,12259,7018,11536,1648,1991,2040,2047,2048,10826,12080,8748,8272,8204,1172,1923,7297,2798,7422,6327,4415,7653,6360,11442,12168,7005,8023,9924,8440,8228,2931,7441,1063,3663,5790,9605,10150,1450,8985,11817,10466,10273,12001,3470,7518,1074,1909,7295,9820,4914,702,5367,7789,8135,9940,1420,3714,11064,12114,12264,1752,5517,9566,11900,1700,3754,5803,829,1874,7290,2797,10933,5073,7747,8129,6428,6185,11417,1631,233,5300,9535,10140,11982,8734,8270,2937,10953,8587,8249,2934,9197,4825,5956,4362,9401,1343,3703,529,10609,12049,6988,6265,895,3639,4031,4087,4095,585,10617,8539,4731,4187,9376,3095,9220,10095,10220,1460,10742,12068,1724,5513,11321,6884,2739,5658,6075,4379,11159,10372,8504,4726,9453,3106,7466,11600,10435,8513,9994,8450,9985,3182,10988,8592,2983,9204,4826,2445,5616,6069,867,3635,5786,11360,5134,2489,10889,12089,1727,7269,2794,9177,1311,5454,9557,6632,2703,9164,10087,1441,3717,531,3587,2268,324,5313,759,1864,5533,2546,7386,9833,8427,4715,11207,1601,7251,4547,11183,12131,1733,10781,10318,1474,10744,5046,4232,11138,10369,6748,964,7160,4534,7670,8118,8182,4680,11202,6867,981,8918,1274,182,26,7026,8026,11680,12202,10521,1503,7237,4545,5916,9623,8397,11733,10454,3249,9242,6587,941,1890,270,10572,6777,9746,6659,6218,6155,6146,878,1881,7291,11575,12187,1741,7271,8061,11685,6936,4502,9421,4857,4205,7623,1089,10689,1527,8996,10063,11971,10488,6765,2722,3900,9335,11867,6962,11528,5158,4248,4118,5855,2592,5637,6072,2623,7397,8079,9932,4930,5971,853,3633,519,8852,11798,3441,11025,1575,225,8810,11792,12218,3501,9278,3081,9218,4828,7712,8124,11694,12204,3499,4011,573,3593,5780,7848,9899,10192,1456,208,7052,2763,7417,11593,10434,12024,8740,11782,10461,3250,5731,7841,9898,1414,202,3540,7528,2831,2160,10842,5060,4234,4116,588,84,12,7024,2759,9172,6577,11473,1639,9012,3043,7457,6332,11438,1634,1989,9062,11828,8712,11778,12216,10523,6770,9745,10170,4964,9487,6622,946,8913,6540,6201,4397,9406,8366,9973,8447,8229,11709,8695,10020,3187,5722,2573,10901,6824,4486,4152,9371,8361,2950,2177,311,1800,9035,8313,11721,3430,490,70,10,1757,251,3547,7529,11609,3414,7510,4584,4166,9373,1339,5458,7802,11648,1664,7260,9815,10180,6721,9738,10169,8475,8233,9954,1422,8981,1283,5450,11312,1616,3742,11068,10359,4991,713,3613,9294,8350,4704,672,96,7036,9783,11931,3460,5761,823,10651,12055,10500,1500,5481,783,3623,11051,8601,8251,8201,11705,10450,5004,4226,7626,2845,2162,3820,7568,9859,3164,452,10598,1514,5483,6050,6131,4387,7649,8115,6426,918,8909,8295,1185,5436,11310,8638,1234,5443,11311,5127,2488,2111,10835,5059,7745,2862,3920,560,80,1767,2008,3798,11076,6849,2734,10924,12094,8750,1250,10712,6797,971,7161,1023,8924,4786,7706,4612,4170,7618,6355,4419,5898,11376,10403,10264,6733,4473,639,5358,2521,9138,3061,5704,4326,618,5355,765,5376,768,7132,4530,9425,3102,9221,6584,11474,10417,10266,12000,6981,6264,4406,2385,7363,4563,4163,7617,9866,3165,9230,11852,10471,5007,5982,11388,5138,734,3616,11050,12112,6997,11533,12181,10518,12036,3475,2252,7344,9827,4915,9480,6621,4457,7659,9872,6677,4465,4149,7615,4599,657,3605,515,10607,6782,4480,640,1847,3775,5806,2585,5636,9583,1369,10729,8555,10000,11962,5220,7768,8132,8184,9947,1421,203,29,8782,11788,1684,10774,10317,4985,9490,8378,4708,11206,5112,5997,7879,11659,12199,8765,10030,4944,5973,6120,6141,6144,7900,11662,1666,238,34,3516,5769,9602,8394,9977,6692,956,10670,6791,9748,11926,8726,11780,5194,742,106,8793,10034,3189,10989,5081,4237,5872,4350,2377,10873,6820,6241,11425,10410,10265,3222,5727,9596,4882,2453,2106,3812,11078,12116,5242,4260,11142,8614,11764,12214,5256,4262,4120,11122,5100,11262,5120,2487,5622,9581,8391,8221,2930,10952,12098,6995,6266,9673,4893,699,3611,4027,5842,11368,1624,232,8811,8281,1183,169,8802,3013,2186,5579,797,3625,4029,11109,1587,7249,11569,8675,6506,2685,10917,12093,12261,12285,1755,7273,1039,1904,272,3550,9285,3082,5707,6082,4380,7648,11626,5172,4250,9385,8363,8217,4685,5936,848,8899,6538,934,1889,3781,9318,10109,10222,6727,961,5404,772,5377,9546,8386,1198,8949,3034,2189,7335,4559,5918,2601,10905,5069,9502,3113,7467,8089,11689,5181,9518,8382,2953,3933,4073,4093,7607,8109,2914,5683,4323,11151,1593,10761,6804,972,3650,2277,5592,4310,7638,9869,4921,703,1856,9043,4803,9464,1352,8971,11815,5199,7765,6376,4422,7654,2849,407,8836,6529,7955,2892,9191,1313,10721,12065,12257,1751,9028,8312,2943,2176,3822,546,78,8789,11789,10462,12028,6985,4509,9422,1346,5459,4291,613,10621,6784,9747,3148,7472,2823,5670,810,7138,8042,4660,7688,6365,6176,6149,2634,5643,9584,10147,11983,5223,9524,11894,10477,8519,1217,3685,2282,326,10580,3267,7489,4581,2410,5611,11335,6886,8006,8166,11700,3427,11023,8597,10006,3185,455,65,5276,7776,4622,5927,7869,9902,11948,5218,2501,5624,2559,10899,1557,1978,10816,10323,8497,4725,675,1852,10798,12076,10503,3256,9243,3076,2195,10847,12083,10504,12034,10497};
bitrev_vector(r->coeffs);
ntt((uint16_t *)r->coeffs, omegas_inv_montgomery);
mul_coefficients(r->coeffs, psis_inv_montgomery);
}
inline void encode_a(unsigned char *r, const poly *pk, const unsigned char *seed)
{
int i;
poly_tobytes(r, pk);
for(i=0;i<NEWHOPE_SEED_BYTES;i++)
r[NEWHOPE_POLY_BYTES+i] = seed[i];
}
inline void decode_a(poly *pk, unsigned char *seed, const unsigned char *r)
{
int i;
poly_frombytes(pk, r);
for(i=0;i<NEWHOPE_SEED_BYTES;i++)
seed[i] = r[NEWHOPE_POLY_BYTES+i];
}
inline void encode_b(unsigned char *r, const poly *b, const poly *c)
{
int i;
poly_tobytes(r,b);
for(i=0;i<PARAM_N/4;i++)
r[NEWHOPE_POLY_BYTES+i] = c->coeffs[4*i] | (c->coeffs[4*i+1] << 2) | (c->coeffs[4*i+2] << 4) | (c->coeffs[4*i+3] << 6);
}
inline void decode_b(poly *b, poly *c, const unsigned char *r)
{
int i;
poly_frombytes(b, r);
for(i=0;i<PARAM_N/4;i++)
{
c->coeffs[4*i+0] = r[NEWHOPE_POLY_BYTES+i] & 0x03;
c->coeffs[4*i+1] = (r[NEWHOPE_POLY_BYTES+i] >> 2) & 0x03;
c->coeffs[4*i+2] = (r[NEWHOPE_POLY_BYTES+i] >> 4) & 0x03;
c->coeffs[4*i+3] = (r[NEWHOPE_POLY_BYTES+i] >> 6);
}
}
inline int32_t ct_abs(int32_t v)
{
int32_t mask = v >> 31;
return (v ^ mask) - mask;
}
inline int32_t f(int32_t *v0, int32_t *v1, int32_t x)
{
int32_t xit, t, r, b;
// Next 6 lines compute t = x/PARAM_Q;
b = x*2730;
t = b >> 25;
b = x - t*12289;
b = 12288 - b;
b >>= 31;
t -= b;
r = t & 1;
xit = (t>>1);
*v0 = xit+r; // v0 = round(x/(2*PARAM_Q))
t -= 1;
r = t & 1;
*v1 = (t>>1)+r;
return ct_abs(x-((*v0)*2*PARAM_Q));
}
inline int32_t g(int32_t x)
{
int32_t t,c,b;
// Next 6 lines compute t = x/(4*PARAM_Q);
b = x*2730;
t = b >> 27;
b = x - t*49156;
b = 49155 - b;
b >>= 31;
t -= b;
c = t & 1;
t = (t >> 1) + c; // t = round(x/(8*PARAM_Q))
t *= 8*PARAM_Q;
return ct_abs(t - x);
}
inline int16_t LDDecode(int32_t xi0, int32_t xi1, int32_t xi2, int32_t xi3)
{
int32_t t;
t = g(xi0);
t += g(xi1);
t += g(xi2);
t += g(xi3);
t -= 8*PARAM_Q;
t >>= 31;
return t&1;
}
inline void helprec(poly *c, const poly *v, RandomNumberGenerator& rng)
{
int32_t v0[4], v1[4];
unsigned char rand[32];
int i;
rng.randomize(rand, 32);
for(i=0; i<256; i++)
{
unsigned char rbit = (rand[i>>3] >> (i&7)) & 1;
int32_t k;
k = f(v0+0, v1+0, 8*v->coeffs[ 0+i] + 4*rbit);
k += f(v0+1, v1+1, 8*v->coeffs[256+i] + 4*rbit);
k += f(v0+2, v1+2, 8*v->coeffs[512+i] + 4*rbit);
k += f(v0+3, v1+3, 8*v->coeffs[768+i] + 4*rbit);
k = (2*PARAM_Q-1-k) >> 31;
int32_t v_tmp[4];
v_tmp[0] = ((~k) & v0[0]) ^ (k & v1[0]);
v_tmp[1] = ((~k) & v0[1]) ^ (k & v1[1]);
v_tmp[2] = ((~k) & v0[2]) ^ (k & v1[2]);
v_tmp[3] = ((~k) & v0[3]) ^ (k & v1[3]);
c->coeffs[ 0+i] = (v_tmp[0] - v_tmp[3]) & 3;
c->coeffs[256+i] = (v_tmp[1] - v_tmp[3]) & 3;
c->coeffs[512+i] = (v_tmp[2] - v_tmp[3]) & 3;
c->coeffs[768+i] = ( -k + 2*v_tmp[3]) & 3;
}
}
inline void rec(unsigned char *key, const poly *v, const poly *c)
{
int i;
int32_t tmp[4];
for(i=0;i<32;i++)
key[i] = 0;
for(i=0; i<256; i++)
{
tmp[0] = 16*PARAM_Q + 8*(int32_t)v->coeffs[ 0+i] - PARAM_Q * (2*c->coeffs[ 0+i]+c->coeffs[768+i]);
tmp[1] = 16*PARAM_Q + 8*(int32_t)v->coeffs[256+i] - PARAM_Q * (2*c->coeffs[256+i]+c->coeffs[768+i]);
tmp[2] = 16*PARAM_Q + 8*(int32_t)v->coeffs[512+i] - PARAM_Q * (2*c->coeffs[512+i]+c->coeffs[768+i]);
tmp[3] = 16*PARAM_Q + 8*(int32_t)v->coeffs[768+i] - PARAM_Q * ( c->coeffs[768+i]);
key[i>>3] |= LDDecode(tmp[0], tmp[1], tmp[2], tmp[3]) << (i & 7);
}
}
/* Based on the public domain implementation in
* crypto_hash/keccakc512/simple/ from http://bench.cr.yp.to/supercop.html
* by Ronny Van Keer
* and the public domain "TweetFips202" implementation
* from https://twitter.com/tweetfips202
* by Gilles Van Assche, Daniel J. Bernstein, and Peter Schwabe */
void keccak_absorb(uint64_t *s,
unsigned int r,
const unsigned char *m, unsigned long long int mlen,
unsigned char p)
{
unsigned long long i;
unsigned char t[200];
for (i = 0; i < 25; ++i)
s[i] = 0;
while (mlen >= r)
{
for (i = 0; i < r / 8; ++i)
s[i] ^= load_le<u64bit>(m, i);
Keccak_1600::permute(s);
mlen -= r;
m += r;
}
for (i = 0; i < r; ++i)
t[i] = 0;
for (i = 0; i < mlen; ++i)
t[i] = m[i];
t[i] = p;
t[r - 1] |= 128;
for (i = 0; i < r / 8; ++i)
s[i] ^= load_le<u64bit>(t, i);
}
inline void keccak_squeezeblocks(unsigned char *h, unsigned long long int nblocks,
uint64_t *s, unsigned int r)
{
unsigned int i;
while(nblocks > 0)
{
Keccak_1600::permute(s);
copy_out_le(h, r, s);
h += r;
nblocks--;
}
}
inline void shake128_absorb(uint64_t *s, const unsigned char *input, unsigned int inputByteLen)
{
keccak_absorb(s, SHAKE128_RATE, input, inputByteLen, 0x1F);
}
inline void shake128_squeezeblocks(unsigned char *output, unsigned long long nblocks, uint64_t *s)
{
keccak_squeezeblocks(output, nblocks, s, SHAKE128_RATE);
}
void gen_a(poly *a, const unsigned char *seed)
{
unsigned int pos=0, ctr=0;
uint16_t val;
uint64_t state[25];
unsigned int nblocks=16;
uint8_t buf[SHAKE128_RATE*nblocks];
shake128_absorb(state, seed, NEWHOPE_SEED_BYTES);
shake128_squeezeblocks((unsigned char *) buf, nblocks, state);
while(ctr < PARAM_N)
{
val = (buf[pos] | ((uint16_t) buf[pos+1] << 8)) & 0x3fff; // Specialized for q = 12889
if(val < PARAM_Q)
a->coeffs[ctr++] = val;
pos += 2;
if(pos > SHAKE128_RATE*nblocks-2)
{
nblocks=1;
shake128_squeezeblocks((unsigned char *) buf,nblocks,state);
pos = 0;
}
}
}
}
// API FUNCTIONS
void newhope_hash(unsigned char *output, const unsigned char *input, unsigned int inputByteLen)
{
const size_t SHA3_256_RATE = 136;
uint64_t s[25];
unsigned char t[SHA3_256_RATE];
int i;
keccak_absorb(s, SHA3_256_RATE, input, inputByteLen, 0x06);
keccak_squeezeblocks(t, 1, s, SHA3_256_RATE);
for(i=0;i<32;i++)
output[i] = t[i];
}
void newhope_keygen(unsigned char *send, poly *sk, RandomNumberGenerator& rng)
{
poly a, e, r, pk;
unsigned char seed[NEWHOPE_SEED_BYTES];
rng.randomize(seed, NEWHOPE_SEED_BYTES);
gen_a(&a, seed);
poly_getnoise(rng, sk);
poly_ntt(sk);
poly_getnoise(rng, &e);
poly_ntt(&e);
poly_pointwise(&r,sk,&a);
poly_add(&pk,&e,&r);
encode_a(send, &pk, seed);
}
void newhope_sharedb(unsigned char *sharedkey, unsigned char *send, const unsigned char *received,
RandomNumberGenerator& rng)
{
poly sp, ep, v, a, pka, c, epp, bp;
unsigned char seed[NEWHOPE_SEED_BYTES];
decode_a(&pka, seed, received);
gen_a(&a, seed);
poly_getnoise(rng, &sp);
poly_ntt(&sp);
poly_getnoise(rng, &ep);
poly_ntt(&ep);
poly_pointwise(&bp, &a, &sp);
poly_add(&bp, &bp, &ep);
poly_pointwise(&v, &pka, &sp);
poly_invntt(&v);
poly_getnoise(rng, &epp);
poly_add(&v, &v, &epp);
helprec(&c, &v, rng);
encode_b(send, &bp, &c);
rec(sharedkey, &v, &c);
newhope_hash(sharedkey, sharedkey, 32);
}
void newhope_shareda(unsigned char *sharedkey, const poly *sk, const unsigned char *received)
{
poly v,bp, c;
decode_b(&bp, &c, received);
poly_pointwise(&v,sk,&bp);
poly_invntt(&v);
rec(sharedkey, &v, &c);
newhope_hash(sharedkey, sharedkey, 32);
}
}
#undef PARAM_N
#undef PARAM_Q
|