1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
/**
* (C) Copyright Projet SECRET, INRIA, Rocquencourt
* (C) Bhaskar Biswas and Nicolas Sendrier
*
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
*
* Botan is released under the Simplified BSD License (see license.txt)
*
*/
#include <botan/polyn_gf2m.h>
#include <botan/gf2m_rootfind_dcmp.h>
#include <botan/code_based_util.h>
#include <botan/gf2m_small_m.h>
#include <botan/internal/bit_ops.h>
namespace Botan {
using namespace Botan::gf2m_small_m;
namespace {
gf2m generate_gf2m_mask(gf2m a)
{
gf2m result = (a != 0);
return ~(result - 1);
}
unsigned nlz_16bit(u16bit x)
{
unsigned n;
if(x == 0) return 16;
n = 0;
if(x <= 0x00FF) {n = n + 8; x = x << 8;}
if(x <= 0x0FFF) {n = n + 4; x = x << 4;}
if(x <= 0x3FFF) {n = n + 2; x = x << 2;}
if(x <= 0x7FFF) {n = n + 1;}
return n;
}
}
using namespace Botan::gf2m_small_m;
int polyn_gf2m::calc_degree_secure() const
{
int i = this->coeff.size() - 1;
int result = 0;
u32bit found_mask = 0;
u32bit tracker_mask = 0xffff;
for( ; i >= 0; i--)
{
found_mask = expand_mask_16bit(this->coeff[i]);
result |= i & found_mask & tracker_mask;
// tracker mask shall become zero once found mask is set
// it shall remain zero from then on
tracker_mask = tracker_mask & ~found_mask;
}
const_cast<polyn_gf2m*>(this)->m_deg = result;
return result;
}
/**
* number of leading zeros
*/
gf2m random_code_element(unsigned code_length, Botan::RandomNumberGenerator& rng)
{
if(code_length == 0)
{
throw Invalid_Argument("random_code_element() was supplied a code length of zero");
}
unsigned nlz = nlz_16bit(code_length-1);
gf2m mask = (1 << (16-nlz)) -1;
gf2m result;
do
{
rng.randomize(reinterpret_cast<byte*>(&result), sizeof(result));
result &= mask;
} while(result >= code_length); // rejection sampling
return result;
}
polyn_gf2m::polyn_gf2m(polyn_gf2m const& other)
:m_deg(other.m_deg),
coeff(other.coeff),
msp_field(other.msp_field)
{ }
polyn_gf2m::polyn_gf2m( int d, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
:m_deg(-1),
coeff(d+1),
msp_field(sp_field)
{
}
std::string polyn_gf2m::to_string() const
{
int d = get_degree();
std::string result;
for(int i = 0; i <= d; i ++)
{
result += std::to_string(this->coeff[i]);
if(i != d)
{
result += ", ";
}
}
return result;
}
/**
* doesn't save coefficients:
*/
void polyn_gf2m::realloc(u32bit new_size)
{
this->coeff = secure_vector<gf2m>(new_size);
}
polyn_gf2m::polyn_gf2m(const byte* mem, u32bit mem_len, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
:msp_field(sp_field)
{
if(mem_len % sizeof(gf2m))
{
throw new Botan::Decoding_Error("illegal length of memory to decode ");
}
u32bit size = (mem_len / sizeof(this->coeff[0])) ;
this->coeff = secure_vector<gf2m>(size);
this->m_deg = -1;
for(u32bit i = 0; i < size; i++)
{
this->coeff[i] = gf2m_small_m::decode_gf2m(mem);
mem += sizeof(this->coeff[0]);
}
for(u32bit i = 0; i < size; i++)
{
if(this->coeff[i] >= (1 << sp_field->get_extension_degree()))
{
throw Botan::Decoding_Error("error decoding polynomial");
}
}
this->get_degree();
}
polyn_gf2m::polyn_gf2m( std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field )
: m_deg(-1),
coeff(1),
msp_field(sp_field)
{};
polyn_gf2m::polyn_gf2m(int degree, const unsigned char* mem, u32bit mem_byte_len, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
:msp_field(sp_field)
{
u32bit j, k, l;
gf2m a;
u32bit polyn_size;
polyn_size = degree + 1;
if(polyn_size * sp_field->get_extension_degree() > 8 * mem_byte_len)
{
throw Botan::Decoding_Error("memory vector for polynomial has wrong size");
}
this->coeff = secure_vector<gf2m>(degree+1);
gf2m ext_deg = this->msp_field->get_extension_degree();
for (l = 0; l < polyn_size; l++)
{
k = (l * ext_deg) / 8;
j = (l * ext_deg) % 8;
a = mem[k] >> j;
if (j + ext_deg > 8)
{
a ^= mem[k + 1] << (8- j);
}
if(j + ext_deg > 16)
{
a ^= mem[k + 2] << (16- j);
}
a &= ((1 << ext_deg) - 1);
(*this).set_coef( l, a);
}
this->get_degree();
}
#if 0
void polyn_gf2m::encode(u32bit min_numo_coeffs, byte* mem, u32bit mem_len) const
{
u32bit i;
u32bit numo_coeffs, needed_size;
this->get_degree();
numo_coeffs = (min_numo_coeffs > static_cast<u32bit>(this->m_deg+1)) ? min_numo_coeffs : this->m_deg+1;
needed_size = sizeof(this->coeff[0]) * numo_coeffs;
if(mem_len < needed_size)
{
Invalid_Argument("provided memory too small to encode polynomial");
}
for(i = 0; i < numo_coeffs; i++)
{
gf2m to_enc;
if(i >= static_cast<u32bit>(this->m_deg+1))
{
/* encode a zero */
to_enc = 0;
}
else
{
to_enc = this->coeff[i];
}
mem += encode_gf2m(to_enc, mem);
}
}
#endif
void polyn_gf2m::set_to_zero()
{
clear_mem(&this->coeff[0], this->coeff.size());
this->m_deg = -1;
}
int polyn_gf2m::get_degree() const
{
int d = this->coeff.size() - 1;
while ((d >= 0) && (this->coeff[d] == 0))
--d;
const_cast<polyn_gf2m*>(this)->m_deg = d;
return d;
}
static gf2m eval_aux(const gf2m * /*restrict*/ coeff, gf2m a, int d, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
{
gf2m b;
b = coeff[d--];
for (; d >= 0; --d)
if (b != 0)
{
b = sp_field->gf_mul(b, a) ^ coeff[d];
}
else
{
b = coeff[d];
}
return b;
}
gf2m polyn_gf2m::eval(gf2m a)
{
return eval_aux(&this->coeff[0], a, this->m_deg, this->msp_field);
}
// p will contain it's remainder modulo g
void polyn_gf2m::remainder(polyn_gf2m &p, const polyn_gf2m & g)
{
int i, j, d;
std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
d = p.get_degree() - g.get_degree();
if (d >= 0) {
gf2m la = msp_field->gf_inv_rn(g.get_lead_coef());
for (i = p.get_degree(); d >= 0; --i, --d) {
if (p[i] != 0) {
gf2m lb = msp_field->gf_mul_rrn(la, p[i]);
for (j = 0; j < g.get_degree(); ++j)
{
p[j+d] ^= msp_field->gf_mul_zrz(lb, g[j]);
}
(*&p).set_coef( i, 0);
}
}
p.set_degree( g.get_degree() - 1);
while ((p.get_degree() >= 0) && (p[p.get_degree()] == 0))
p.set_degree( p.get_degree() - 1);
}
}
std::vector<polyn_gf2m> polyn_gf2m::sqmod_init(const polyn_gf2m & g)
{
std::vector<polyn_gf2m> sq;
const int signed_deg = g.get_degree();
if(signed_deg <= 0)
throw Invalid_Argument("cannot compute sqmod for such low degree");
const u32bit d = static_cast<u32bit>(signed_deg);
u32bit t = g.m_deg;
// create t zero polynomials
u32bit i;
for (i = 0; i < t; ++i)
{
sq.push_back(polyn_gf2m(t+1, g.get_sp_field()));
}
for (i = 0; i < d / 2; ++i)
{
sq[i].set_degree( 2 * i);
(*&sq[i]).set_coef( 2 * i, 1);
}
for (; i < d; ++i)
{
clear_mem(&sq[i].coeff[0], 2);
copy_mem(&sq[i].coeff[0] + 2, &sq[i - 1].coeff[0], d);
sq[i].set_degree( sq[i - 1].get_degree() + 2);
polyn_gf2m::remainder(sq[i], g);
}
return sq;
}
/*Modulo p square of a certain polynomial g, sq[] contains the square
Modulo g of the base canonical polynomials of degree < d, where d is
the degree of G. The table sq[] will be calculated by polyn_gf2m__sqmod_init*/
polyn_gf2m polyn_gf2m::sqmod( const std::vector<polyn_gf2m> & sq, int d)
{
int i, j;
gf2m la;
std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field = this->msp_field;
polyn_gf2m result(d - 1, sp_field);
// terms of low degree
for (i = 0; i < d / 2; ++i)
{
(*&result).set_coef( i * 2, sp_field->gf_square((*this)[i]));
}
// terms of high degree
for (; i < d; ++i)
{
gf2m lpi = (*this)[i];
if (lpi != 0)
{
lpi = sp_field->gf_log(lpi);
la = sp_field->gf_mul_rrr(lpi, lpi);
for (j = 0; j < d; ++j)
{
result[j] ^= sp_field->gf_mul_zrz(la, sq[i][j]);
}
}
}
// Update degre
result.set_degree( d - 1);
while ((result.get_degree() >= 0) && (result[result.get_degree()] == 0))
result.set_degree( result.get_degree() - 1);
return result;
}
// destructive
polyn_gf2m polyn_gf2m::gcd_aux(polyn_gf2m& p1, polyn_gf2m& p2)
{
if (p2.get_degree() == -1)
return p1;
else {
polyn_gf2m::remainder(p1, p2);
return polyn_gf2m::gcd_aux(p2, p1);
}
}
polyn_gf2m polyn_gf2m::gcd(polyn_gf2m const& p1, polyn_gf2m const& p2)
{
polyn_gf2m a(p1);
polyn_gf2m b(p2);
if (a.get_degree() < b.get_degree())
{
return polyn_gf2m(polyn_gf2m::gcd_aux(b, a));
}
else
{
return polyn_gf2m(polyn_gf2m::gcd_aux(a, b));
}
}
// Returns the degree of the smallest factor
void polyn_gf2m::degppf(const polyn_gf2m & g, int* p_result)
{
int i, d;
polyn_gf2m s(g.get_sp_field());
d = g.get_degree();
std::vector<polyn_gf2m> u = polyn_gf2m::sqmod_init(g);
polyn_gf2m p( d - 1, g.msp_field);
p.set_degree( 1);
(*&p).set_coef( 1, 1);
(*p_result) = d;
for (i = 1; i <= (d / 2) * g.msp_field->get_extension_degree(); ++i)
{
polyn_gf2m r = p.sqmod(u, d);
if ((i % g.msp_field->get_extension_degree()) == 0)
{
r[1] ^= 1;
r.get_degree(); // The degree may change
s = polyn_gf2m::gcd( g, r);
if (s.get_degree() > 0)
{
(*p_result) = i / g.msp_field->get_extension_degree();
break;
}
r[1] ^= 1;
r.get_degree(); // The degree may change
}
// No need for the exchange s
s = p;
p = r;
r = s;
}
}
void polyn_gf2m::patchup_deg_secure( u32bit trgt_deg, volatile gf2m patch_elem)
{
u32bit i;
if(this->coeff.size() < trgt_deg)
{
return;
}
for(i = 0; i < this->coeff.size(); i++)
{
u32bit equal, equal_mask;
this->coeff[i] |= patch_elem;
equal = (i == trgt_deg);
equal_mask = expand_mask_16bit(equal);
patch_elem &= ~equal_mask;
}
this->calc_degree_secure();
}
// We suppose m_deg(g) >= m_deg(p)
// v is the problem
std::pair<polyn_gf2m, polyn_gf2m> polyn_gf2m::eea_with_coefficients( const polyn_gf2m & p, const polyn_gf2m & g, int break_deg)
{
std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
int i, j, dr, du, delta;
gf2m a;
polyn_gf2m aux;
// initialisation of the local variables
// r0 <- g, r1 <- p, u0 <- 0, u1 <- 1
dr = g.get_degree();
polyn_gf2m r0(dr, g.msp_field);
polyn_gf2m r1(dr - 1, g.msp_field);
polyn_gf2m u0(dr - 1, g.msp_field);
polyn_gf2m u1(dr - 1, g.msp_field);
r0 = g;
r1 = p;
u0.set_to_zero();
u1.set_to_zero();
(*&u1).set_coef( 0, 1);
u1.set_degree( 0);
// invariants:
// r1 = u1 * p + v1 * g
// r0 = u0 * p + v0 * g
// and m_deg(u1) = m_deg(g) - m_deg(r0)
// It stops when m_deg (r1) <t (m_deg (r0)> = t)
// And therefore m_deg (u1) = m_deg (g) - m_deg (r0) <m_deg (g) - break_deg
du = 0;
dr = r1.get_degree();
delta = r0.get_degree() - dr;
while (dr >= break_deg)
{
for (j = delta; j >= 0; --j)
{
a = msp_field->gf_div(r0[dr + j], r1[dr]);
if (a != 0)
{
gf2m la = msp_field->gf_log(a);
// u0(z) <- u0(z) + a * u1(z) * z^j
for (i = 0; i <= du; ++i)
{
u0[i + j] ^= msp_field->gf_mul_zrz(la, u1[i]);
}
// r0(z) <- r0(z) + a * r1(z) * z^j
for (i = 0; i <= dr; ++i)
{
r0[i + j] ^= msp_field->gf_mul_zrz(la, r1[i]);
}
}
} // end loop over j
if(break_deg != 1) /* key eq. solving */
{
/* [ssms_icisc09] Countermeasure
* d_break from paper equals break_deg - 1
* */
volatile gf2m fake_elem = 0x01;
volatile gf2m cond1, cond2;
int trgt_deg = r1.get_degree() - 1;
r0.calc_degree_secure();
u0.calc_degree_secure();
if(!(g.get_degree() % 2))
{
/* t even */
cond1 = r0.get_degree() < break_deg - 1;
}
else
{
/* t odd */
cond1 = r0.get_degree() <= break_deg - 1;
cond2 = u0.get_degree() < break_deg - 1;
cond1 &= cond2;
}
/* expand cond1 to a full mask */
//CSEC_MASK__GEN_MASK_16B(cond1, mask);
gf2m mask = generate_gf2m_mask(cond1);
fake_elem &= mask;
r0.patchup_deg_secure(trgt_deg, fake_elem);
}
if(break_deg == 1) /* syndrome inversion */
{
volatile gf2m fake_elem = 0x00;
volatile u32bit trgt_deg = 0;
r0.calc_degree_secure();
u0.calc_degree_secure();
/**
* countermeasure against the low weight attacks for w=4, w=6 and w=8.
* Higher values are not covered since for w=8 we already have a
* probability for a positive of 1/n^3 from random ciphertexts with the
* given weight. For w = 10 it would be 1/n^4 and so on. Thus attacks
* based on such high values of w are considered impractical.
*
* The outer test for the degree of u ( Omega in the paper ) needs not to
* be disguised. Each of the three is performed at most once per EEA
* (syndrome inversion) execution, the attacker knows this already when
* preparing the ciphertext with the given weight. Inside these three
* cases however, we must use timing neutral (branch free) operations to
* implement the condition detection and the counteractions.
*
*/
if(u0.get_degree() == 4)
{
u32bit mask = 0;
/**
* Condition that the EEA would break now
*/
int cond_r = r0.get_degree() == 0;
/**
* Now come the conditions for all odd coefficients of this sigma
* candiate. If they are all fulfilled, then we know that we have a low
* weight error vector, since the key-equation solving EEA is skipped if
* the degree of tau^2 is low (=m_deg(u0)) and all its odd cofficients are
* zero (they would cause "full-lenght" contributions from the square
* root computation).
*/
// Condition for the coefficient to Y to be cancelled out by the
// addition of Y before the square root computation:
int cond_u1 = msp_field->gf_mul(u0.coeff[1], msp_field->gf_inv(r0.coeff[0])) == 1;
// Condition sigma_3 = 0:
int cond_u3 = u0.coeff[3] == 0;
// combine the conditions:
cond_r &= (cond_u1 & cond_u3);
// mask generation:
mask = expand_mask_16bit(cond_r);
trgt_deg = 2 & mask;
fake_elem = 1 & mask;
}
else if(u0.get_degree() == 6)
{
u32bit mask = 0;
int cond_r= r0.get_degree() == 0;
int cond_u1 = msp_field->gf_mul(u0.coeff[1], msp_field->gf_inv(r0.coeff[0])) == 1;
int cond_u3 = u0.coeff[3] == 0;
int cond_u5 = u0.coeff[5] == 0;
cond_r &= (cond_u1 & cond_u3 & cond_u5);
mask = expand_mask_16bit(cond_r);
trgt_deg = 4 & mask;
fake_elem = 1 & mask;
}
else if(u0.get_degree() == 8)
{
u32bit mask = 0;
int cond_r= r0.get_degree() == 0;
int cond_u1 = msp_field->gf_mul(u0[1], msp_field->gf_inv(r0[0])) == 1;
int cond_u3 = u0.coeff[3] == 0;
int cond_u5 = u0.coeff[5] == 0;
int cond_u7 = u0.coeff[7] == 0;
cond_r &= (cond_u1 & cond_u3 & cond_u5 & cond_u7);
mask = expand_mask_16bit(cond_r);
trgt_deg = 6 & mask;
fake_elem = 1 & mask;
}
r0.patchup_deg_secure(trgt_deg, fake_elem);
}
// exchange
aux = r0; r0 = r1; r1 = aux;
aux = u0; u0 = u1; u1 = aux;
du = du + delta;
delta = 1;
while (r1[dr - delta] == 0)
{
delta++;
}
dr -= delta;
} /* end while loop (dr >= break_deg) */
u1.set_degree( du);
r1.set_degree( dr);
//return u1 and r1;
return std::make_pair(u1,r1); // coefficients u,v
}
polyn_gf2m::polyn_gf2m(int t, Botan::RandomNumberGenerator& rng, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field)
:m_deg(t),
coeff(t+1),
msp_field(sp_field)
{
int i;
(*this).set_coef( t, 1);
i = 0;
int m_deg;
do
{
for (i = 0; i < t; ++i)
{
(*this).set_coef( i, random_code_element(sp_field->get_cardinality(), rng));
}
polyn_gf2m::degppf(*this, &m_deg);
}
while (m_deg < t);
}
void polyn_gf2m::poly_shiftmod( const polyn_gf2m & g)
{
int i, t;
gf2m a;
if(g.get_degree() <= 0)
{
throw Invalid_Argument("shiftmod cannot be called on polynomials of degree 0 or less");
}
std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
t = g.get_degree();
a = msp_field->gf_div(this->coeff[t-1], g.coeff[t]);
for (i = t - 1; i > 0; --i)
{
this->coeff[i] = this->coeff[i - 1] ^ this->msp_field->gf_mul(a, g.coeff[i]);
}
this->coeff[0] = msp_field->gf_mul(a, g.coeff[0]);
}
std::vector<polyn_gf2m> polyn_gf2m::sqrt_mod_init(const polyn_gf2m & g)
{
u32bit i, t;
u32bit nb_polyn_sqrt_mat;
std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = g.msp_field;
std::vector<polyn_gf2m> result;
t = g.get_degree();
nb_polyn_sqrt_mat = t/2;
std::vector<polyn_gf2m> sq_aux = polyn_gf2m::sqmod_init(g);
polyn_gf2m p( t - 1, g.get_sp_field());
p.set_degree( 1);
(*&p).set_coef( 1, 1);
// q(z) = 0, p(z) = z
for (i = 0; i < t * msp_field->get_extension_degree() - 1; ++i)
{
// q(z) <- p(z)^2 mod g(z)
polyn_gf2m q = p.sqmod(sq_aux, t);
// q(z) <-> p(z)
polyn_gf2m aux = q;
q = p;
p = aux;
}
// p(z) = z^(2^(tm-1)) mod g(z) = sqrt(z) mod g(z)
for (i = 0; i < nb_polyn_sqrt_mat; ++i)
{
result.push_back(polyn_gf2m(t - 1, g.get_sp_field()));
}
result[0] = p;
result[0].get_degree();
for(i = 1; i < nb_polyn_sqrt_mat; i++)
{
result[i] = result[i - 1];
result[i].poly_shiftmod(g),
result[i].get_degree();
}
return result;
}
std::vector<polyn_gf2m> syndrome_init(polyn_gf2m const& generator, std::vector<gf2m> const& support, int n)
{
int i,j,t;
gf2m a;
std::shared_ptr<gf2m_small_m::Gf2m_Field> msp_field = generator.msp_field;
std::vector<polyn_gf2m> result;
t = generator.get_degree();
//g(z)=g_t+g_(t-1).z^(t-1)+......+g_1.z+g_0
//f(z)=f_(t-1).z^(t-1)+......+f_1.z+f_0
for(j=0;j<n;j++)
{
result.push_back(polyn_gf2m( t-1, msp_field));
(*&result[j]).set_coef(t-1,1);
for(i=t-2;i>=0;i--)
{
(*&result[j]).set_coef(i, (generator)[i+1] ^
msp_field->gf_mul(lex_to_gray(support[j]),result[j][i+1]));
}
a = ((generator)[0] ^ msp_field->gf_mul(lex_to_gray(support[j]),result[j][0]));
for(i=0;i<t;i++)
{
(*&result[j]).set_coef(i, msp_field->gf_div(result[j][i],a));
}
}
return result;
}
polyn_gf2m::polyn_gf2m(const secure_vector<byte>& encoded, std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field )
:msp_field(sp_field)
{
if(encoded.size() % 2)
{
throw Decoding_Error("encoded polynomial has odd length");
}
for(u32bit i = 0; i < encoded.size(); i += 2)
{
gf2m el = (encoded[i] << 8) | encoded[i + 1];
coeff.push_back(el);
}
get_degree();
}
secure_vector<byte> polyn_gf2m::encode() const
{
secure_vector<byte> result;
if(m_deg < 1)
{
result.push_back(0);
result.push_back(0);
return result;
}
u32bit len = m_deg+1;
for(unsigned i = 0; i < len; i++)
{
// "big endian" encoding of the GF(2^m) elements
result.push_back(coeff[i] >> 8);
result.push_back(coeff[i]);
}
return result;
}
void polyn_gf2m::swap(polyn_gf2m& other)
{
std::swap(this->m_deg, other.m_deg);
std::swap(this->msp_field, other.msp_field);
std::swap(this->coeff, other.coeff);
}
bool polyn_gf2m::operator==(const polyn_gf2m & other) const
{
if(m_deg != other.m_deg || coeff != other.coeff)
{
return false;
}
return true;
}
}
|