1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* (C) Copyright Projet SECRET, INRIA, Rocquencourt
* (C) Bhaskar Biswas and Nicolas Sendrier
*
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
* (C) 2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*
*/
#include <botan/mceliece.h>
#include <botan/internal/mce_internal.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/code_based_util.h>
#include <botan/internal/pk_ops_impl.h>
#include <botan/loadstor.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/rng.h>
namespace Botan {
McEliece_PrivateKey::McEliece_PrivateKey(polyn_gf2m const& goppa_polyn,
std::vector<uint32_t> const& parity_check_matrix_coeffs,
std::vector<polyn_gf2m> const& square_root_matrix,
std::vector<gf2m> const& inverse_support,
std::vector<uint8_t> const& public_matrix) :
McEliece_PublicKey(public_matrix, goppa_polyn.get_degree(), inverse_support.size()),
m_g(goppa_polyn),
m_sqrtmod(square_root_matrix),
m_Linv(inverse_support),
m_coeffs(parity_check_matrix_coeffs),
m_codimension(ceil_log2(inverse_support.size()) * goppa_polyn.get_degree()),
m_dimension(inverse_support.size() - m_codimension)
{
}
McEliece_PrivateKey::McEliece_PrivateKey(RandomNumberGenerator& rng, size_t code_length, size_t t)
{
uint32_t ext_deg = ceil_log2(code_length);
*this = generate_mceliece_key(rng, ext_deg, code_length, t);
}
uint32_t McEliece_PublicKey::get_message_word_bit_length() const
{
uint32_t codimension = ceil_log2(m_code_length) * m_t;
return m_code_length - codimension;
}
secure_vector<uint8_t> McEliece_PublicKey::random_plaintext_element(RandomNumberGenerator& rng) const
{
const size_t bits = get_message_word_bit_length();
secure_vector<uint8_t> plaintext((bits+7)/8);
rng.randomize(plaintext.data(), plaintext.size());
// unset unused bits in the last plaintext byte
if(uint32_t used = bits % 8)
{
const uint8_t mask = (1 << used) - 1;
plaintext[plaintext.size() - 1] &= mask;
}
return plaintext;
}
AlgorithmIdentifier McEliece_PublicKey::algorithm_identifier() const
{
return AlgorithmIdentifier(get_oid(), AlgorithmIdentifier::USE_EMPTY_PARAM);
}
std::vector<uint8_t> McEliece_PublicKey::public_key_bits() const
{
std::vector<uint8_t> output;
DER_Encoder(output)
.start_cons(SEQUENCE)
.start_cons(SEQUENCE)
.encode(static_cast<size_t>(get_code_length()))
.encode(static_cast<size_t>(get_t()))
.end_cons()
.encode(m_public_matrix, OCTET_STRING)
.end_cons();
return output;
}
size_t McEliece_PublicKey::key_length() const
{
return m_code_length;
}
size_t McEliece_PublicKey::estimated_strength() const
{
return mceliece_work_factor(m_code_length, m_t);
}
McEliece_PublicKey::McEliece_PublicKey(const std::vector<uint8_t>& key_bits)
{
BER_Decoder dec(key_bits);
size_t n;
size_t t;
dec.start_cons(SEQUENCE)
.start_cons(SEQUENCE)
.decode(n)
.decode(t)
.end_cons()
.decode(m_public_matrix, OCTET_STRING)
.end_cons();
m_t = t;
m_code_length = n;
}
secure_vector<uint8_t> McEliece_PrivateKey::private_key_bits() const
{
DER_Encoder enc;
enc.start_cons(SEQUENCE)
.start_cons(SEQUENCE)
.encode(static_cast<size_t>(get_code_length()))
.encode(static_cast<size_t>(get_t()))
.end_cons()
.encode(m_public_matrix, OCTET_STRING)
.encode(m_g.encode(), OCTET_STRING); // g as octet string
enc.start_cons(SEQUENCE);
for(size_t i = 0; i < m_sqrtmod.size(); i++)
{
enc.encode(m_sqrtmod[i].encode(), OCTET_STRING);
}
enc.end_cons();
secure_vector<uint8_t> enc_support;
for(uint16_t Linv : m_Linv)
{
enc_support.push_back(get_byte(0, Linv));
enc_support.push_back(get_byte(1, Linv));
}
enc.encode(enc_support, OCTET_STRING);
secure_vector<uint8_t> enc_H;
for(uint32_t coef : m_coeffs)
{
enc_H.push_back(get_byte(0, coef));
enc_H.push_back(get_byte(1, coef));
enc_H.push_back(get_byte(2, coef));
enc_H.push_back(get_byte(3, coef));
}
enc.encode(enc_H, OCTET_STRING);
enc.end_cons();
return enc.get_contents();
}
bool McEliece_PrivateKey::check_key(RandomNumberGenerator& rng, bool) const
{
const secure_vector<uint8_t> plaintext = this->random_plaintext_element(rng);
secure_vector<uint8_t> ciphertext;
secure_vector<uint8_t> errors;
mceliece_encrypt(ciphertext, errors, plaintext, *this, rng);
secure_vector<uint8_t> plaintext_out;
secure_vector<uint8_t> errors_out;
mceliece_decrypt(plaintext_out, errors_out, ciphertext, *this);
if(errors != errors_out || plaintext != plaintext_out)
return false;
return true;
}
McEliece_PrivateKey::McEliece_PrivateKey(const secure_vector<uint8_t>& key_bits)
{
size_t n, t;
secure_vector<uint8_t> enc_g;
BER_Decoder dec_base(key_bits);
BER_Decoder dec = dec_base.start_cons(SEQUENCE)
.start_cons(SEQUENCE)
.decode(n)
.decode(t)
.end_cons()
.decode(m_public_matrix, OCTET_STRING)
.decode(enc_g, OCTET_STRING);
if(t == 0 || n == 0)
throw Decoding_Error("invalid McEliece parameters");
uint32_t ext_deg = ceil_log2(n);
m_code_length = n;
m_t = t;
m_codimension = (ext_deg * t);
m_dimension = (n - m_codimension);
std::shared_ptr<GF2m_Field> sp_field(new GF2m_Field(ext_deg));
m_g = polyn_gf2m(enc_g, sp_field);
if(m_g.get_degree() != static_cast<int>(t))
{
throw Decoding_Error("degree of decoded Goppa polynomial is incorrect");
}
BER_Decoder dec2 = dec.start_cons(SEQUENCE);
for(uint32_t i = 0; i < t/2; i++)
{
secure_vector<uint8_t> sqrt_enc;
dec2.decode(sqrt_enc, OCTET_STRING);
while(sqrt_enc.size() < (t*2))
{
// ensure that the length is always t
sqrt_enc.push_back(0);
sqrt_enc.push_back(0);
}
if(sqrt_enc.size() != t*2)
{
throw Decoding_Error("length of square root polynomial entry is too large");
}
m_sqrtmod.push_back(polyn_gf2m(sqrt_enc, sp_field));
}
secure_vector<uint8_t> enc_support;
BER_Decoder dec3 = dec2.end_cons()
.decode(enc_support, OCTET_STRING);
if(enc_support.size() % 2)
{
throw Decoding_Error("encoded support has odd length");
}
if(enc_support.size() / 2 != n)
{
throw Decoding_Error("encoded support has length different from code length");
}
for(uint32_t i = 0; i < n*2; i+=2)
{
gf2m el = (enc_support[i] << 8) | enc_support[i+1];
m_Linv.push_back(el);
}
secure_vector<uint8_t> enc_H;
dec3.decode(enc_H, OCTET_STRING)
.end_cons();
if(enc_H.size() % 4)
{
throw Decoding_Error("encoded parity check matrix has length which is not a multiple of four");
}
if(enc_H.size()/4 != bit_size_to_32bit_size(m_codimension) * m_code_length )
{
throw Decoding_Error("encoded parity check matrix has wrong length");
}
for(uint32_t i = 0; i < enc_H.size(); i+=4)
{
uint32_t coeff = (enc_H[i] << 24) | (enc_H[i+1] << 16) | (enc_H[i+2] << 8) | enc_H[i+3];
m_coeffs.push_back(coeff);
}
}
bool McEliece_PrivateKey::operator==(const McEliece_PrivateKey & other) const
{
if(*static_cast<const McEliece_PublicKey*>(this) != *static_cast<const McEliece_PublicKey*>(&other))
{
return false;
}
if(m_g != other.m_g)
{
return false;
}
if( m_sqrtmod != other.m_sqrtmod)
{
return false;
}
if( m_Linv != other.m_Linv)
{
return false;
}
if( m_coeffs != other.m_coeffs)
{
return false;
}
if(m_codimension != other.m_codimension || m_dimension != other.m_dimension)
{
return false;
}
return true;
}
bool McEliece_PublicKey::operator==(const McEliece_PublicKey& other) const
{
if(m_public_matrix != other.m_public_matrix)
{
return false;
}
if(m_t != other.m_t )
{
return false;
}
if( m_code_length != other.m_code_length)
{
return false;
}
return true;
}
namespace {
class MCE_KEM_Encryptor final : public PK_Ops::KEM_Encryption_with_KDF
{
public:
MCE_KEM_Encryptor(const McEliece_PublicKey& key,
const std::string& kdf) :
KEM_Encryption_with_KDF(kdf), m_key(key) {}
private:
void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& raw_shared_key,
Botan::RandomNumberGenerator& rng) override
{
secure_vector<uint8_t> plaintext = m_key.random_plaintext_element(rng);
secure_vector<uint8_t> ciphertext, error_mask;
mceliece_encrypt(ciphertext, error_mask, plaintext, m_key, rng);
raw_shared_key.clear();
raw_shared_key += plaintext;
raw_shared_key += error_mask;
out_encapsulated_key.swap(ciphertext);
}
const McEliece_PublicKey& m_key;
};
class MCE_KEM_Decryptor final : public PK_Ops::KEM_Decryption_with_KDF
{
public:
MCE_KEM_Decryptor(const McEliece_PrivateKey& key,
const std::string& kdf) :
KEM_Decryption_with_KDF(kdf), m_key(key) {}
private:
secure_vector<uint8_t>
raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
{
secure_vector<uint8_t> plaintext, error_mask;
mceliece_decrypt(plaintext, error_mask, encap_key, len, m_key);
secure_vector<uint8_t> output;
output.reserve(plaintext.size() + error_mask.size());
output.insert(output.end(), plaintext.begin(), plaintext.end());
output.insert(output.end(), error_mask.begin(), error_mask.end());
return output;
}
const McEliece_PrivateKey& m_key;
};
}
std::unique_ptr<PK_Ops::KEM_Encryption>
McEliece_PublicKey::create_kem_encryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::KEM_Encryption>(new MCE_KEM_Encryptor(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::KEM_Decryption>
McEliece_PrivateKey::create_kem_decryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::KEM_Decryption>(new MCE_KEM_Decryptor(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
}
|