aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/mce/mceliece.cpp
blob: 69d5eb008cd2b085a58393834eb9b88cce3a3c5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/**
 * (C) Copyright Projet SECRET, INRIA, Rocquencourt
 * (C) Bhaskar Biswas and  Nicolas Sendrier
 *
 * (C) 2014 cryptosource GmbH
 * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
 *
 * Distributed under the terms of the Botan license
 *
 */

#include <botan/mceliece.h>
#include <botan/mceliece_key.h>
#include <botan/internal/code_based_key_gen.h>
#include <botan/polyn_gf2m.h>
#include <botan/code_based_util.h>
#include <botan/goppa_code.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/xor_buf.h>
#include <iostream>

namespace Botan {

namespace {
void concat_vectors(unsigned char* x, const unsigned char* a, const unsigned char* b, u32bit dimension, u32bit codimension)
   {
   if(dimension % 8 == 0)
      {
      std::memcpy(x, a, bit_size_to_byte_size(dimension));
      std::memcpy(((unsigned char *) x) + bit_size_to_byte_size(dimension), b, bit_size_to_byte_size(codimension));
      }
   else
      {
      u32bit i, j, k, l;
      i = dimension - 8 * (dimension/ 8);
      j = 8 - i;
      l = dimension / 8;
      std::memcpy(x, a, 1 * (dimension / 8));
      x[l] = ((byte) (a[l] & ((1 << i) - 1)));

      for(k = 0; k < codimension / 8; ++k)
         {
         x[l] ^= ((byte) ( b[k] << i));
         ++l;
         x[l] = ((byte) (b[k] >> j));
         }
      x[l] ^= ((byte) ( b[k] << i));
      }
   }

std::vector<byte> mult_by_pubkey(const byte *cleartext,
                                 std::vector<byte> const& public_matrix,
                                 u32bit code_length, u32bit t)
   {
   std::vector<byte> ciphertext(code_length);
   u32bit i, j;
   u32bit ext_deg = ceil_log2(code_length);
   u32bit codimension = ext_deg * t;
   u32bit dimension = code_length - codimension;
   std::vector<byte> cR(bit_size_to_32bit_size(codimension)* sizeof(u32bit));

   const byte* pt = &public_matrix[0];

   for(i = 0; i < dimension / 8; ++i)
      {
      for(j = 0; j < 8; ++j)
         {
         if(cleartext[i] & (1 << j))
            {
            xor_buf(&cR[0], pt, cR.size());
            }
         pt += bit_size_to_32bit_size(codimension) * sizeof(u32bit);
         }
      }

   for(j = 0; j < dimension % 8 ; ++j)
      {
      if(cleartext[i] & (1 << j))
         {
         xor_buf(&cR[0], pt, bit_size_to_byte_size(codimension));
         }
      pt += bit_size_to_32bit_size(codimension) * sizeof(u32bit);
      }

   concat_vectors( &ciphertext[0],  cleartext, &cR[0], dimension, codimension);
   return ciphertext;
   }

}

secure_vector<gf2m> create_random_error_positions(unsigned code_length,
                                                  unsigned error_weight,
                                                  RandomNumberGenerator& rng)
   {
   secure_vector<gf2m> result(error_weight);
   gf2m i;
   for(i = 0; i < result.size(); i++)
      {
      unsigned j;
      char try_again = 0;
      do
         {
         try_again = 0;
         gf2m new_pos = random_code_element(code_length, rng);
         for(j = 0; j < i; j++)
            {
            if(new_pos == result[j])
               {
               try_again = 1;
               break;
               }
            }
         result[i] = new_pos;
         } while(try_again);
      }
   return result;
   }

McEliece_Private_Operation::McEliece_Private_Operation(const McEliece_PrivateKey& private_key)
   :m_priv_key(private_key)
   {
   }

secure_vector<byte> McEliece_Private_Operation::decrypt(const byte msg[], size_t msg_len)
   {
   secure_vector<gf2m> err_pos;

   secure_vector<byte> plaintext = mceliece_decrypt(
      err_pos,
      msg, msg_len,
      m_priv_key
      );

   return mceliece_message_parts(err_pos, plaintext, m_priv_key.get_code_length()).get_concat();
   }

McEliece_Public_Operation::McEliece_Public_Operation(const McEliece_PublicKey& public_key, u32bit the_code_length)
   :m_pub_key(public_key),
    m_code_length(the_code_length)
   {}

secure_vector<byte> McEliece_Public_Operation::encrypt(const byte msg[], size_t msg_len, RandomNumberGenerator&)
   {
   mceliece_message_parts parts(msg, msg_len, m_pub_key.get_code_length());
   secure_vector<gf2m> err_pos = parts.get_error_positions();
   secure_vector<byte> message_word = parts.get_message_word();
   secure_vector<byte> ciphertext((m_pub_key.get_code_length()+7)/8);


   std::vector<byte> ciphertext_tmp = mceliece_encrypt( message_word,  m_pub_key.get_public_matrix(), err_pos, m_code_length);

   std::memcpy(&ciphertext[0], &ciphertext_tmp[0], ciphertext.size());
   return ciphertext;
   }

std::vector<byte> mceliece_encrypt(const secure_vector<byte> & cleartext,
                                   std::vector<byte> const& public_matrix,
                                   const secure_vector<gf2m> & err_pos,
                                   u32bit code_length)
   {
   std::vector<byte> ciphertext = mult_by_pubkey(&cleartext[0], public_matrix, code_length, err_pos.size());

   // flip t error positions
   for(size_t i = 0; i < err_pos.size(); ++i)
      {
      ciphertext[err_pos[i] / 8] ^= (1 << (err_pos[i] % 8));
      }

   return ciphertext;
   }

}