aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/mce/mce_overbeck_cca2.cpp
blob: 7edd2e2a3a4d767acdc2959203b88e635bb71249 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/**
 * (C) 2014 cryptosource GmbH
 * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
 *
 * Distributed under the terms of the Botan license
 *
 */

#include <botan/mce_overbeck_cca2.h>
#include <botan/sha2_64.h>
#include <botan/mceliece.h>
#include <botan/internal/xor_buf.h>

namespace Botan
{

  McEliece_Overbeck_CCA2_Public_Operation::McEliece_Overbeck_CCA2_Public_Operation(const McEliece_PublicKey& public_key)
    :m_raw_pub_op(public_key, public_key.get_code_length())
  {
    if(public_key.get_message_word_bit_length() < 1024)
    {
      // k is smaller than the minimum required length for Overbeck conversion
      // using SHA-512
      throw Invalid_Argument("McEliece parameters are too small to support the Overbeck conversion with SHA-512, the dimension of the code must be at least 1024");
    }
  }


  secure_vector<byte> McEliece_Overbeck_CCA2_Public_Operation::encrypt(const byte msg[], size_t msg_len, RandomNumberGenerator& rng)
  {
    const u32bit k = m_raw_pub_op.max_input_bits();
    const u32bit l = 512; // output length of SHA-512
    const u32bit l_bytes = l/8;
    const u32bit u1_bit_length = k - l;
    const u32bit u1_length_ceil = (u1_bit_length + 7)/8; // valid lengths ensured already during construction
    const McEliece_PublicKey & key = m_raw_pub_op.get_key();
    const u32bit n = key.get_code_length();
    const u32bit n_bytes_ceil = (n+7)/8;
    const u32bit k_bytes_ceil = (k+7)/8;

    if(msg_len != l_bytes)
    {
      throw Invalid_Argument("McEliece/Overbeck message lengtth must be 64 bytes");
    }
     secure_vector<byte> u1(u1_length_ceil);
    rng.randomize(&u1[0], u1.size());
   // unused bits of final byte of u1 must be set to zero
    u32bit used = u1_bit_length % 8;
   if(used)
   {
      byte mask = (1 << used) - 1;

      u1[u1.size() - 1] &= mask;
   }

    secure_vector<byte> u2(l_bytes);
    rng.randomize(&u2[0], u2.size());

    // compute the hash of m||u1:
    SHA_512 hash;

    hash.update(msg, msg_len);
    hash.update(u2);
    secure_vector<byte> hash_m_u2 = hash.final();

    //std::cout << "enc hash_m_u2 " << hex_encode(hash_m_u2) << "\n";

    secure_vector<byte> mce_msg(k_bytes_ceil);
    std::memcpy(&mce_msg[0], &hash_m_u2[0], hash_m_u2.size());
    std::memcpy(&mce_msg[hash_m_u2.size()], &u1[0], u1.size());

// create the error vector
    secure_vector<gf2m> err_pos = create_random_error_positions(n, key.get_t(), rng);

    secure_vector<byte> err_vec = mceliece_message_parts::error_vector_from_error_positions(&err_pos[0], err_pos.size(), n);

    mceliece_message_parts parts(err_pos, mce_msg, n);

    secure_vector<byte> message_and_error_input = parts.get_concat();

    //std::cout << "enc msg_and_error " << hex_encode(message_and_error_input) << "\n";
    //std::cout << "enc h(msg_and_error) " << hex_encode(hash.process(message_and_error_input)) << "\n";

    secure_vector<byte> mce_ct = m_raw_pub_op.encrypt(&message_and_error_input[0], message_and_error_input.size(), rng);

    secure_vector<byte> result(n_bytes_ceil + 2*l_bytes);

    BOTAN_ASSERT(mce_ct.size() == (key.get_code_length()+7)/8, "Expected size");

    std::memcpy(&result[0], &mce_ct[0], mce_ct.size());


    // z2 part of the ciphertext
    SHA_512 hash2;
    secure_vector<byte> hash_u1 = hash2.process(u1);

    //std::cout << "enc hash_u1 " << hex_encode(hash_u1) << "\n";

    xor_buf(&result[mce_ct.size()], &hash_u1[0], &msg[0], l_bytes);

    // 3rd part of the overbeck ct
    SHA_512 hash3;
    secure_vector<byte> err_hash = hash3.process(err_vec);

    //std::cout << "enc err_hash " << hex_encode(err_hash) << "\n";

    const u32bit z3_offs = n_bytes_ceil + l_bytes;
    xor_buf(&result[z3_offs], &u2[0], &err_hash[0], l_bytes);

    return result;
  }

  McEliece_Overbeck_CCA2_Private_Operation::McEliece_Overbeck_CCA2_Private_Operation(const McEliece_PrivateKey& mce_key)
    :m_raw_priv_op(mce_key)
  {
    if(mce_key.get_dimension() < 1024)
    {
      // k is smaller than the minimum required length for Overbeck conversion
      // using SHA-512
      throw Invalid_Argument("McEliece parameters are too small to support the Overbeck conversion with SHA-512, the dimension of the code must be at least 1024");
    }
  }

  secure_vector<byte> McEliece_Overbeck_CCA2_Private_Operation::decrypt(const byte msg[], size_t msg_len)
  {

    const McEliece_PrivateKey& key = m_raw_priv_op.get_key();
    const u32bit k = key.get_dimension();
    const u32bit l = 512; // output length of SHA-512
    const u32bit l_bytes = l/8;
    const u32bit r_length_ceil = (k - l + 7)/8; // valid lengths ensured already during construction
    const u32bit n = key.get_code_length();
    const u32bit n_bytes_ceil = (n+7)/8;

    const u32bit z2_offs = n_bytes_ceil;
    const u32bit z3_offs = n_bytes_ceil + l_bytes;

    if(msg_len != (max_input_bits()+7)/8)
    {
      throw Invalid_Argument("wrong length of McEliece/Overbeck ciphertext");
    }
    secure_vector<byte> mce_pt_and_err  = m_raw_priv_op.decrypt(msg, n_bytes_ceil);

    SHA_512 hash;
    //std::cout << "dec msg_and_error " << hex_encode(mce_pt_and_err) << "\n";
    //std::cout << "dec h(msg_and_error) " << hex_encode(hash.process(mce_pt_and_err)) << "\n";

    mceliece_message_parts parts(&mce_pt_and_err[0], mce_pt_and_err.size(), n);

    secure_vector<byte> mce_pt = parts.get_message_word();
    secure_vector<byte> err_vec = parts.get_error_vector();

    secure_vector<byte> h(l_bytes);
    std::memcpy(&h[0], &mce_pt[0], l_bytes);
    secure_vector<byte> r(r_length_ceil);
    std::memcpy(&r[0], &mce_pt[l_bytes], r.size());

    secure_vector<byte> hash_r = hash.process(r);
    //std::cout << "dec hash_r " << hex_encode(hash_r) << "\n";

    secure_vector<byte> m(l_bytes);
    xor_buf(&m[0], &msg[z2_offs], &hash_r[0], l_bytes);

    SHA_512 hash2;
    secure_vector<byte> hash_e = hash2.process(err_vec);
    //std::cout << "dec hash_e " << hex_encode(hash_e) << "\n";
    xor_buf(&hash_e[0], &msg[z3_offs], l_bytes);
    // hash_e now is H(e) ^ z3 = u2

    SHA_512 hash3;
    hash3.update(m);
    hash3.update(hash_e);
    secure_vector<byte> h_cmp = hash3.final();

    //std::cout << "dec hash_cmp " << hex_encode(h_cmp) << "\n";
    if(h_cmp != h)
       throw Integrity_Failure("McEliece/Overbeck CCA2 check failed");
    return m;

  }

}