1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* (C) Copyright Projet SECRET, INRIA, Rocquencourt
* (C) Bhaskar Biswas and Nicolas Sendrier
*
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/gf2m_small_m.h>
#include <botan/code_based_util.h>
#include <string>
namespace Botan {
namespace gf2m_small_m {
#define MAX_EXT_DEG 16
namespace {
unsigned int prim_poly[MAX_EXT_DEG + 1] = {
01, /* extension degree 0 (!) never used */
03, /* extension degree 1 (!) never used */
07, /* extension degree 2 */
013, /* extension degree 3 */
023, /* extension degree 4 */
045, /* extension degree 5 */
0103, /* extension degree 6 */
0203, /* extension degree 7 */
0435, /* extension degree 8 */
01041, /* extension degree 9 */
02011, /* extension degree 10 */
04005, /* extension degree 11 */
010123, /* extension degree 12 */
020033, /* extension degree 13 */
042103, /* extension degree 14 */
0100003, /* extension degree 15 */
0210013 /* extension degree 16 */
};
}
u32bit encode_gf2m(gf2m to_enc, byte* mem)
{
mem[0] = to_enc >> 8;
mem[1] = to_enc & 0xFF;
return sizeof(to_enc);
}
gf2m decode_gf2m(const byte* mem)
{
gf2m result;
result = mem[0] << 8;
result |= mem[1];
return result;
}
// construct the table gf_exp[i]=alpha^i
void Gf2m_Field::init_exp()
{
m_gf_exp_table.resize(1 << get_extension_degree());
m_gf_exp_table[0] = 1;
for(size_t i = 1; i < gf_ord(); ++i)
{
m_gf_exp_table[i] = m_gf_exp_table[i - 1] << 1;
if (m_gf_exp_table[i - 1] & (1 << (get_extension_degree()-1)))
{
m_gf_exp_table[i] ^= prim_poly[get_extension_degree()];
}
}
// hack for the multiplication
m_gf_exp_table[gf_ord()] = 1;
}
// construct the table gf_log[alpha^i]=i
void Gf2m_Field::init_log()
{
m_gf_log_table.resize(1 << get_extension_degree());
m_gf_log_table[0] = gf_ord(); // log of 0 par convention
for (size_t i = 0; i < gf_ord() ; ++i)
{
m_gf_log_table[m_gf_exp_table[i]] = i;
}
}
Gf2m_Field::Gf2m_Field(size_t extdeg)
{
if(extdeg < 2 || extdeg > MAX_EXT_DEG)
throw std::runtime_error("Gf2m_Field does not support degree " + std::to_string(extdeg));
m_gf_extension_degree = extdeg;
m_gf_cardinality = 1 << extdeg;
m_gf_multiplicative_order = m_gf_cardinality - 1;
init_exp();
init_log();
}
gf2m Gf2m_Field::gf_div(gf2m x, gf2m y)
{
s32bit sub_res = ((s32bit)m_gf_log_table[x]) - ((s32bit) m_gf_log_table[y]);
s32bit modq_res = ((s32bit)_gf_modq_1(sub_res));
s32bit div_res = (((s32bit)x) ? ((s32bit) m_gf_exp_table[modq_res]) : 0 );
return (gf2m) div_res;
}
// we suppose i >= 0. Par convention 0^0 = 1
gf2m Gf2m_Field::gf_pow(gf2m x, int i)
{
if (i == 0)
return 1;
else if (x == 0)
return 0;
else
{
// i mod (q-1)
while (i >> get_extension_degree())
i = (i & (gf_ord())) + (i >> get_extension_degree());
i *= m_gf_log_table[x];
while (i >> get_extension_degree())
i = (i & (gf_ord())) + (i >> get_extension_degree());
return m_gf_exp_table[i];
}
}
}
}
|