1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/**
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
*
* Botan is released under the Simplified BSD License (see license.txt)
*
*/
#include <botan/gf2m_rootfind_dcmp.h>
#include <botan/gf2m_small_m.h>
#include <botan/internal/bit_ops.h>
#include <botan/code_based_util.h>
namespace Botan
{
namespace {
u32bit patch_root_array(
gf2m* res_root_arr,
u32bit res_root_arr_len,
u32bit root_pos)
{
volatile u32bit i;
volatile gf2m patch_elem = 0x01;
volatile gf2m cond_mask = (root_pos == res_root_arr_len);
cond_mask = expand_mask_16bit(cond_mask);
cond_mask = ~cond_mask; /* now cond = 1 if not enough roots */
patch_elem &= cond_mask;
for(i = 0; i < res_root_arr_len; i++)
{
gf2m masked_patch_elem = (patch_elem++) & cond_mask;
res_root_arr[i] ^= masked_patch_elem++;
}
return res_root_arr_len;
}
struct gf2m_decomp_rootfind_state
{
gf2m_decomp_rootfind_state(const polyn_gf2m & p_polyn, u32bit code_length);
void calc_LiK(const polyn_gf2m & sigma);
gf2m calc_Fxj_j_neq_0( const polyn_gf2m & sigma, gf2m j_gray);
void calc_next_Aij();
void calc_Ai_zero(const polyn_gf2m & sigma);
secure_vector<gf2m> find_roots(const polyn_gf2m & sigma);
u32bit get_code_length() const { return code_length; };
u32bit code_length;
secure_vector<gf2m> m_Lik; // size is outer_summands * m
secure_vector<gf2m> m_Aij; // ...
u32bit m_outer_summands;
gf2m m_j;
gf2m m_j_gray;
gf2m m_sigma_3_l;
gf2m m_sigma_3_neq_0_mask;
} ;
/*
* !! Attention: assumes gf2m is 16bit !!
*/
#if 0
gf2m brootf_decomp__gray_to_lex(gf2m gray)
{
static_assert(sizeof(gf2m) == 2, "Expected size");
gf2m result = gray ^ (gray>>8);
result ^= (result >> 4);
result ^= (result >> 2);
result ^= (result >> 1);
return result;
}
#endif
/**
* calculates ceil((t-4)/5) = outer_summands - 1
*/
u32bit brootf_decomp__calc_sum_limit(u32bit t)
{
u32bit result;
if(t < 4)
{
return 0;
}
result = t - 4;
result += 4;
result /= 5;
return result;
}
}
secure_vector<gf2m> find_roots_gf2m_decomp(const polyn_gf2m & polyn, u32bit code_length)
{
gf2m_decomp_rootfind_state state(polyn, code_length);
return state.find_roots(polyn);
}
gf2m_decomp_rootfind_state::gf2m_decomp_rootfind_state(const polyn_gf2m & polyn, u32bit the_code_length)
:code_length(the_code_length)
{
gf2m coeff_3;
gf2m coeff_head;
std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field = polyn.get_sp_field();
int deg_sigma = polyn.get_degree();
if(deg_sigma <= 3)
{
throw std::exception();
}
this->m_j = 0;
coeff_3 = polyn.get_coef( 3);
coeff_head = polyn.get_coef( deg_sigma); /* dummy value for SCA CM */
if(coeff_3 != 0)
{
this->m_sigma_3_l = sp_field->gf_l_from_n(coeff_3);
this->m_sigma_3_neq_0_mask = 0xFFFF;
}
else
{
// dummy value needed for timing countermeasure
this->m_sigma_3_l = sp_field->gf_l_from_n(coeff_head);
this->m_sigma_3_neq_0_mask = 0 ;
}
this->m_outer_summands = 1 + brootf_decomp__calc_sum_limit(deg_sigma);
this->m_Lik.resize(this->m_outer_summands * sp_field->get_extension_degree());
this->m_Aij.resize(this->m_outer_summands);
}
void gf2m_decomp_rootfind_state::calc_Ai_zero(const polyn_gf2m & sigma)
{
u32bit i;
/*
* this function assumes this the first gray code element is zero
*/
for(i = 0; i < this->m_outer_summands; i++)
{
this->m_Aij[i] = sigma.get_coef(5*i);
}
this->m_j = 0;
this->m_j_gray = 0;
}
void gf2m_decomp_rootfind_state::calc_next_Aij()
{
/*
* upon function entry, we have in the state j, Aij.
* first thing, we declare Aij Aij_minusone and increase j.
* Case j=0 upon function entry also included, then Aij contains A_{i,j=0}.
*/
u32bit i;
gf2m diff, new_j_gray;
u32bit Lik_pos_base;
this->m_j++;
new_j_gray = lex_to_gray(this->m_j);
if(this->m_j & 1) /* half of the times */
{
Lik_pos_base = 0;
}
else if(this->m_j & 2) /* one quarter of the times */
{
Lik_pos_base = this->m_outer_summands;
}
else if( this->m_j & 4) /* one eighth of the times */
{
Lik_pos_base = this->m_outer_summands * 2;
}
else if( this->m_j & 8) /* one sixteenth of the times */
{
Lik_pos_base = this->m_outer_summands * 3;
}
else if( this->m_j & 16) /* ... */
{
Lik_pos_base = this->m_outer_summands * 4;
}
else
{
gf2m delta_offs = 5;
diff = this->m_j_gray ^ new_j_gray;
while(((static_cast<gf2m>(1) << delta_offs) & diff) == 0)
{
delta_offs++;
}
Lik_pos_base = delta_offs * this->m_outer_summands;
}
this->m_j_gray = new_j_gray;
i = 0;
for(; i < this->m_outer_summands; i++)
{
this->m_Aij[i] ^= this->m_Lik[Lik_pos_base + i];
}
}
void gf2m_decomp_rootfind_state::calc_LiK(const polyn_gf2m & sigma)
{
std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field = sigma.get_sp_field();
u32bit i, k, d;
d = sigma.get_degree();
for(k = 0; k < sp_field->get_extension_degree(); k++)
{
u32bit Lik_pos_base = k * this->m_outer_summands;
gf2m alpha_l_k_tt2_ttj[4];
alpha_l_k_tt2_ttj[0] = sp_field->gf_l_from_n(static_cast<gf2m>(1) << k);
alpha_l_k_tt2_ttj[1] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[0], alpha_l_k_tt2_ttj[0]);
alpha_l_k_tt2_ttj[2] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[1],alpha_l_k_tt2_ttj[1] );
alpha_l_k_tt2_ttj[3] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[2], alpha_l_k_tt2_ttj[2]);
for(i = 0; i < this->m_outer_summands; i++)
{
u32bit j;
u32bit five_i = 5*i;
u32bit Lik_pos = Lik_pos_base + i;
this->m_Lik[Lik_pos] = 0;
for(j = 0; j <= 3; j++)
{
gf2m f, x;
u32bit f_ind = five_i + (static_cast<u32bit>(1) << j);
if(f_ind > d)
{
break;
}
f = sigma.get_coef( f_ind);
x = sp_field->gf_mul_zrz(alpha_l_k_tt2_ttj[j], f);
this->m_Lik[Lik_pos] ^= x;
}
}
}
}
gf2m gf2m_decomp_rootfind_state::calc_Fxj_j_neq_0( const polyn_gf2m & sigma, gf2m j_gray)
{
//needs the A_{ij} to compute F(x)_j
gf2m sum = 0;
u32bit i;
std::shared_ptr<gf2m_small_m::Gf2m_Field> sp_field = sigma.get_sp_field();
gf2m xl_j_tt_5i, xl_j_tt_5, xl_gray_tt_3;
gf2m jl_gray;
jl_gray = sp_field->gf_l_from_n(j_gray);
xl_j_tt_5 = sp_field->gf_square_rr(jl_gray);
xl_gray_tt_3 = sp_field->gf_mul_rrr(xl_j_tt_5, jl_gray);
xl_j_tt_5 = sp_field->gf_mul_rrr(xl_j_tt_5, xl_gray_tt_3);
sum = sp_field->gf_mul_nrr(xl_gray_tt_3, this->m_sigma_3_l);
sum &= this->m_sigma_3_neq_0_mask;
/* here, we rely on compiler to be unable to optimize
* for the state->sigma_3_neq_0_mask value
*/
/* treat i = 0 special: */
sum ^= this->m_Aij[0];
/* treat i = 1 special also */
if(this->m_outer_summands > 1)
{
gf2m x;
xl_j_tt_5i = xl_j_tt_5;
x = sp_field->gf_mul_zrz(xl_j_tt_5, this->m_Aij[1]); /* x_j^{5i} A_i^j */
sum ^= x;
}
for(i = 2; i < this->m_outer_summands; i++)
{
gf2m x;
xl_j_tt_5i = sp_field->gf_mul_rrr(xl_j_tt_5i, xl_j_tt_5);
// now x_j_tt_5i lives up to its name
x = sp_field->gf_mul_zrz(xl_j_tt_5i, this->m_Aij[i]); /* x_j^{5i} A_i^(j) */
sum ^= x;
}
return sum;
}
secure_vector<gf2m> gf2m_decomp_rootfind_state::find_roots(const polyn_gf2m & sigma)
{
secure_vector<gf2m> result(sigma.get_degree());
u32bit root_pos = 0;
this->calc_Ai_zero(sigma);
this->calc_LiK(sigma);
do
{
gf2m eval_result;
if(this->m_j_gray == 0)
{
eval_result = sigma.get_coef( 0);
}
else
{
eval_result = this->calc_Fxj_j_neq_0(sigma, this->m_j_gray);
}
if(eval_result == 0)
{
result[root_pos] = this->m_j_gray;
root_pos++;
}
if(this->m_j + static_cast<u32bit>(1) == this->get_code_length())
{
break;
}
this->calc_next_Aij();
}while(1);
// side channel / fault attack countermeasure:
root_pos = patch_root_array(result.data(), result.size(), root_pos);
result.resize(root_pos);
return result;
}
} // end namespace Botan
|