1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
/*
* ECKCDSA (ISO/IEC 14888-3:2006/Cor.2:2009)
* (C) 2016 René Korthaus, Sirrix AG
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/eckcdsa.h>
#include <botan/internal/pk_ops_impl.h>
#include <botan/keypair.h>
#include <botan/reducer.h>
#include <botan/emsa.h>
#include <botan/hash.h>
namespace Botan {
bool ECKCDSA_PrivateKey::check_key(RandomNumberGenerator& rng,
bool strong) const
{
if(!public_point().on_the_curve())
{
return false;
}
if(!strong)
{
return true;
}
return KeyPair::signature_consistency_check(rng, *this, "EMSA1(SHA-256)");
}
namespace {
/**
* ECKCDSA signature operation
*/
class ECKCDSA_Signature_Operation : public PK_Ops::Signature_with_EMSA
{
public:
typedef ECKCDSA_PrivateKey Key_Type;
ECKCDSA_Signature_Operation(const ECKCDSA_PrivateKey& eckcdsa,
const std::string& emsa) :
PK_Ops::Signature_with_EMSA(emsa),
m_order(eckcdsa.domain().get_order()),
m_base_point(eckcdsa.domain().get_base_point(), m_order),
m_x(eckcdsa.private_value()),
m_mod_order(m_order),
m_prefix()
{
const BigInt public_point_x = eckcdsa.public_point().get_affine_x();
const BigInt public_point_y = eckcdsa.public_point().get_affine_y();
m_prefix.resize(public_point_x.bytes() + public_point_y.bytes());
public_point_x.binary_encode(m_prefix.data());
public_point_y.binary_encode(&m_prefix[public_point_x.bytes()]);
m_prefix.resize(HashFunction::create(hash_for_signature())->hash_block_size()); // use only the "hash input block size" leftmost bits
}
secure_vector<byte> raw_sign(const byte msg[], size_t msg_len,
RandomNumberGenerator& rng) override;
size_t message_parts() const override { return 2; }
size_t message_part_size() const override { return m_order.bytes(); }
size_t max_input_bits() const override { return m_order.bits(); }
bool has_prefix() override { return true; }
secure_vector<byte> message_prefix() const override { return m_prefix; }
private:
const BigInt& m_order;
Blinded_Point_Multiply m_base_point;
const BigInt& m_x;
Modular_Reducer m_mod_order;
secure_vector<byte> m_prefix;
};
secure_vector<byte>
ECKCDSA_Signature_Operation::raw_sign(const byte msg[], size_t,
RandomNumberGenerator& rng)
{
const BigInt k = BigInt::random_integer(rng, 1, m_order);
const PointGFp k_times_P = m_base_point.blinded_multiply(k, rng);
const BigInt k_times_P_x = k_times_P.get_affine_x();
secure_vector<byte> to_be_hashed(k_times_P_x.bytes());
k_times_P_x.binary_encode(to_be_hashed.data());
std::unique_ptr<EMSA> emsa(m_emsa->clone());
emsa->update(to_be_hashed.data(), to_be_hashed.size());
secure_vector<byte> c = emsa->raw_data();
c = emsa->encoding_of(c, max_input_bits(), rng);
const BigInt r(c.data(), c.size());
xor_buf(c, msg, c.size());
BigInt w(c.data(), c.size());
w = m_mod_order.reduce(w);
const BigInt s = m_mod_order.multiply(m_x, k - w);
BOTAN_ASSERT(s != 0, "invalid s");
secure_vector<byte> output = BigInt::encode_1363(r, c.size());
output += BigInt::encode_1363(s, m_mod_order.get_modulus().bytes());
return output;
}
/**
* ECKCDSA verification operation
*/
class ECKCDSA_Verification_Operation : public PK_Ops::Verification_with_EMSA
{
public:
typedef ECKCDSA_PublicKey Key_Type;
ECKCDSA_Verification_Operation(const ECKCDSA_PublicKey& eckcdsa,
const std::string& emsa) :
PK_Ops::Verification_with_EMSA(emsa),
m_base_point(eckcdsa.domain().get_base_point()),
m_public_point(eckcdsa.public_point()),
m_order(eckcdsa.domain().get_order()),
m_mod_order(m_order),
m_prefix()
{
const BigInt public_point_x = m_public_point.get_affine_x();
const BigInt public_point_y = m_public_point.get_affine_y();
m_prefix.resize(public_point_x.bytes() + public_point_y.bytes());
public_point_x.binary_encode(&m_prefix[0]);
public_point_y.binary_encode(&m_prefix[public_point_x.bytes()]);
m_prefix.resize(HashFunction::create(hash_for_signature())->hash_block_size()); // use only the "hash input block size" leftmost bits
}
bool has_prefix() override { return true; }
secure_vector<byte> message_prefix() const override { return m_prefix; }
size_t message_parts() const override { return 2; }
size_t message_part_size() const override { return m_order.bytes(); }
size_t max_input_bits() const override { return m_order.bits(); }
bool with_recovery() const override { return false; }
bool verify(const byte msg[], size_t msg_len,
const byte sig[], size_t sig_len) override;
private:
const PointGFp& m_base_point;
const PointGFp& m_public_point;
const BigInt& m_order;
// FIXME: should be offered by curve
Modular_Reducer m_mod_order;
secure_vector<byte> m_prefix;
};
bool ECKCDSA_Verification_Operation::verify(const byte msg[], size_t,
const byte sig[], size_t sig_len)
{
// check that bit length of r is equal to output bit length of employed hash function h
const std::unique_ptr<HashFunction> hash = HashFunction::create(hash_for_signature());
// no way to know size of r in sig, so check that we have at least hash->output_length()+1
// bytes in sig, enough for r and an arbitrary size s
if(sig_len <= hash->output_length())
{
return false;
}
secure_vector<byte> r(sig, sig + hash->output_length());
// check that 0 < s < q
const BigInt s(sig + hash->output_length(), sig_len - hash->output_length());
if(s <= 0 || s >= m_order)
{
return false;
}
secure_vector<byte> r_xor_e(r);
xor_buf(r_xor_e, msg, r.size());
BigInt w(r_xor_e.data(), r_xor_e.size());
w = m_mod_order.reduce(w);
const PointGFp q = (m_base_point * w) + (m_public_point * s);
const BigInt q_x = q.get_affine_x();
secure_vector<byte> c(q_x.bytes());
q_x.binary_encode(c.data());
std::unique_ptr<EMSA> emsa(m_emsa->clone());
emsa->update(c.data(), c.size());
secure_vector<byte> v = emsa->raw_data();
Null_RNG rng;
v = emsa->encoding_of(v, max_input_bits(), rng);
return (v == r);
}
}
std::unique_ptr<PK_Ops::Verification>
ECKCDSA_PublicKey::create_verification_op(const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Verification>(new ECKCDSA_Verification_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Signature>
ECKCDSA_PrivateKey::create_signature_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(new ECKCDSA_Signature_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
}
|