aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/ec_group/point_mul.cpp
blob: 7acb60b6a810fbc0638e55cf0782039179c42fdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
* (C) 2015,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/internal/point_mul.h>
#include <botan/rng.h>
#include <botan/internal/rounding.h>

namespace Botan {

Blinded_Point_Multiply::Blinded_Point_Multiply(const PointGFp& base,
                                               const BigInt& order,
                                               size_t h) :
   m_ws(PointGFp::WORKSPACE_SIZE),
   m_order(order)
   {
   BOTAN_UNUSED(h);
   m_point_mul.reset(new PointGFp_Var_Point_Precompute(base));
   }

Blinded_Point_Multiply::~Blinded_Point_Multiply()
   {
   /* for ~unique_ptr */
   }

PointGFp Blinded_Point_Multiply::blinded_multiply(const BigInt& scalar,
                                                  RandomNumberGenerator& rng)
   {
   return m_point_mul->mul(scalar, rng, m_order, m_ws);
   }


PointGFp_Base_Point_Precompute::PointGFp_Base_Point_Precompute(const PointGFp& base)
   {
   std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);

   const size_t p_bits = base.get_curve().get_p().bits();

   /*
   * Some of the curves (eg secp160k1) have an order slightly larger than
   * the size of the prime modulus. In all cases they are at most 1 bit
   * longer. The +1 compensates for this.
   */
   const size_t T_bits = round_up(p_bits + PointGFp_SCALAR_BLINDING_BITS + 1, 2) / 2;

   m_T.resize(3*T_bits);

   m_T[0] = base;
   m_T[1] = m_T[0];
   m_T[1].mult2(ws);
   m_T[2] = m_T[1];
   m_T[2].add(m_T[0], ws);

   for(size_t i = 1; i != T_bits; ++i)
      {
      m_T[3*i+0] = m_T[3*i - 2];
      m_T[3*i+0].mult2(ws);
      m_T[3*i+1] = m_T[3*i+0];
      m_T[3*i+1].mult2(ws);
      m_T[3*i+2] = m_T[3*i+1];
      m_T[3*i+2].add(m_T[3*i+0], ws);
      }

   PointGFp::force_all_affine(m_T, ws[0].get_word_vector());
   }

PointGFp PointGFp_Base_Point_Precompute::mul(const BigInt& k,
                                             RandomNumberGenerator& rng,
                                             const BigInt& group_order,
                                             std::vector<BigInt>& ws) const
   {
   if(k.is_negative())
      throw Invalid_Argument("PointGFp_Base_Point_Precompute scalar must be positive");

   // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure)
   const BigInt mask(rng, PointGFp_SCALAR_BLINDING_BITS, false);
   const BigInt scalar = k + group_order * mask;

   size_t windows = round_up(scalar.bits(), 2) / 2;

   BOTAN_ASSERT(windows <= m_T.size() / 3,
                "Precomputed sufficient values for scalar mult");

   if(ws.size() < PointGFp::WORKSPACE_SIZE)
      ws.resize(PointGFp::WORKSPACE_SIZE);

   PointGFp R = m_T[0].zero();

   for(size_t i = 0; i != windows; ++i)
      {
      if(i == 4)
         {
         R.randomize_repr(rng, ws[0].get_word_vector());
         }

      const uint32_t w = scalar.get_substring(2*i, 2);

      if(w > 0)
         R.add_affine(m_T[3*i + w - 1], ws);
      }

   BOTAN_DEBUG_ASSERT(R.on_the_curve());

   return R;
   }

PointGFp_Var_Point_Precompute::PointGFp_Var_Point_Precompute(const PointGFp& point)
   {
   m_window_bits = 4;

   m_U.resize(1U << m_window_bits);
   m_U[0] = point.zero();
   m_U[1] = point;

   std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);
   for(size_t i = 2; i < m_U.size(); ++i)
      {
      m_U[i] = m_U[i-1];
      m_U[i].add(point, ws);
      }
   }

void PointGFp_Var_Point_Precompute::randomize_repr(RandomNumberGenerator& rng)
   {
   for(size_t i = 1; i != m_U.size(); ++i)
      m_U[i].randomize_repr(rng);
   }

PointGFp PointGFp_Var_Point_Precompute::mul(const BigInt& k,
                                            RandomNumberGenerator& rng,
                                            const BigInt& group_order,
                                            std::vector<BigInt>& ws) const
   {
   if(k.is_negative())
      throw Invalid_Argument("PointGFp_Base_Point_Precompute scalar must be positive");
   if(ws.size() < PointGFp::WORKSPACE_SIZE)
      ws.resize(PointGFp::WORKSPACE_SIZE);

   // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure)
   const BigInt mask(rng, PointGFp_SCALAR_BLINDING_BITS, false);
   const BigInt scalar = k + group_order * mask;

   const size_t scalar_bits = scalar.bits();

   size_t windows = round_up(scalar_bits, m_window_bits) / m_window_bits;

   PointGFp R = m_U[0];

   if(windows > 0)
      {
      windows--;
      const uint32_t nibble = scalar.get_substring(windows*m_window_bits, m_window_bits);
      R.add(m_U[nibble], ws);

      /*
      Randomize after adding the first nibble as before the addition R
      is zero, and we cannot effectively randomize the point
      representation of the zero point.
      */
      R.randomize_repr(rng);

      while(windows)
         {
         for(size_t i = 0; i != m_window_bits; ++i)
            R.mult2(ws);

         const uint32_t inner_nibble = scalar.get_substring((windows-1)*m_window_bits, m_window_bits);
         // cache side channel here, we are relying on blinding...
         R.add(m_U[inner_nibble], ws);
         windows--;
         }
      }

   BOTAN_DEBUG_ASSERT(R.on_the_curve());

   return R;
   }

}