1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
/*
* Point arithmetic on elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
* 2008-2011,2014,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_POINT_GFP_H_
#define BOTAN_POINT_GFP_H_
#include <botan/curve_gfp.h>
#include <botan/exceptn.h>
#include <vector>
namespace Botan {
/**
* Exception thrown if you try to convert a zero point to an affine
* coordinate
*
* In a future major release this exception type will be removed and its
* usage replaced by Invalid_State
*/
class BOTAN_PUBLIC_API(2,0) Illegal_Transformation final : public Invalid_State
{
public:
explicit Illegal_Transformation(const std::string& err) : Invalid_State(err) {}
};
/**
* Exception thrown if some form of illegal point is decoded
*
* In a future major release this exception type will be removed and its
* usage replaced by Decoding_Error
*/
class BOTAN_PUBLIC_API(2,0) Illegal_Point final : public Decoding_Error
{
public:
explicit Illegal_Point(const std::string& err) : Decoding_Error(err) {}
};
/**
* This class represents one point on a curve of GF(p)
*/
class BOTAN_PUBLIC_API(2,0) PointGFp final
{
public:
enum Compression_Type {
UNCOMPRESSED = 0,
COMPRESSED = 1,
HYBRID = 2
};
enum { WORKSPACE_SIZE = 8 };
/**
* Construct an uninitialized PointGFp
*/
PointGFp() = default;
/**
* Construct the zero point
* @param curve The base curve
*/
explicit PointGFp(const CurveGFp& curve);
/**
* Copy constructor
*/
PointGFp(const PointGFp&) = default;
/**
* Move Constructor
*/
PointGFp(PointGFp&& other)
{
this->swap(other);
}
/**
* Standard Assignment
*/
PointGFp& operator=(const PointGFp&) = default;
/**
* Move Assignment
*/
PointGFp& operator=(PointGFp&& other)
{
if(this != &other)
this->swap(other);
return (*this);
}
/**
* Construct a point from its affine coordinates
* @param curve the base curve
* @param x affine x coordinate
* @param y affine y coordinate
*/
PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y);
/**
* EC2OSP - elliptic curve to octet string primitive
* @param format which format to encode using
*/
std::vector<uint8_t> encode(PointGFp::Compression_Type format) const;
/**
* += Operator
* @param rhs the PointGFp to add to the local value
* @result resulting PointGFp
*/
PointGFp& operator+=(const PointGFp& rhs);
/**
* -= Operator
* @param rhs the PointGFp to subtract from the local value
* @result resulting PointGFp
*/
PointGFp& operator-=(const PointGFp& rhs);
/**
* *= Operator
* @param scalar the PointGFp to multiply with *this
* @result resulting PointGFp
*/
PointGFp& operator*=(const BigInt& scalar);
/**
* Negate this point
* @return *this
*/
PointGFp& negate()
{
if(!is_zero())
m_coord_y = m_curve.get_p() - m_coord_y;
return *this;
}
/**
* get affine x coordinate
* @result affine x coordinate
*/
BigInt get_affine_x() const;
/**
* get affine y coordinate
* @result affine y coordinate
*/
BigInt get_affine_y() const;
const BigInt& get_x() const { return m_coord_x; }
const BigInt& get_y() const { return m_coord_y; }
const BigInt& get_z() const { return m_coord_z; }
void swap_coords(BigInt& new_x, BigInt& new_y, BigInt& new_z)
{
m_coord_x.swap(new_x);
m_coord_y.swap(new_y);
m_coord_z.swap(new_z);
}
/**
* Force this point to affine coordinates
*/
void force_affine();
/**
* Force all points on the list to affine coordinates
*/
static void force_all_affine(std::vector<PointGFp>& points,
secure_vector<word>& ws);
bool is_affine() const;
/**
* Is this the point at infinity?
* @result true, if this point is at infinity, false otherwise.
*/
bool is_zero() const
{ return (m_coord_x.is_zero() && m_coord_z.is_zero()); }
/**
* Checks whether the point is to be found on the underlying
* curve; used to prevent fault attacks.
* @return if the point is on the curve
*/
bool on_the_curve() const;
/**
* swaps the states of *this and other, does not throw!
* @param other the object to swap values with
*/
void swap(PointGFp& other);
/**
* Randomize the point representation
* The actual value (get_affine_x, get_affine_y) does not change
*/
void randomize_repr(RandomNumberGenerator& rng);
/**
* Randomize the point representation
* The actual value (get_affine_x, get_affine_y) does not change
*/
void randomize_repr(RandomNumberGenerator& rng, secure_vector<word>& ws);
/**
* Equality operator
*/
bool operator==(const PointGFp& other) const;
/**
* Point addition
* @param other the point to add to *this
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void add(const PointGFp& other, std::vector<BigInt>& workspace)
{
BOTAN_ASSERT_NOMSG(m_curve == other.m_curve);
const size_t p_words = m_curve.get_p_words();
add(other.m_coord_x.data(), std::min(p_words, other.m_coord_x.size()),
other.m_coord_y.data(), std::min(p_words, other.m_coord_y.size()),
other.m_coord_z.data(), std::min(p_words, other.m_coord_z.size()),
workspace);
}
/**
* Point addition. Array version.
*
* @param x_words the words of the x coordinate of the other point
* @param x_size size of x_words
* @param y_words the words of the y coordinate of the other point
* @param y_size size of y_words
* @param z_words the words of the z coordinate of the other point
* @param z_size size of z_words
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void add(const word x_words[], size_t x_size,
const word y_words[], size_t y_size,
const word z_words[], size_t z_size,
std::vector<BigInt>& workspace);
/**
* Point addition - mixed J+A
* @param other affine point to add - assumed to be affine!
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void add_affine(const PointGFp& other, std::vector<BigInt>& workspace)
{
BOTAN_ASSERT_NOMSG(m_curve == other.m_curve);
BOTAN_DEBUG_ASSERT(other.is_affine());
const size_t p_words = m_curve.get_p_words();
add_affine(other.m_coord_x.data(), std::min(p_words, other.m_coord_x.size()),
other.m_coord_y.data(), std::min(p_words, other.m_coord_y.size()),
workspace);
}
/**
* Point addition - mixed J+A. Array version.
*
* @param x_words the words of the x coordinate of the other point
* @param x_size size of x_words
* @param y_words the words of the y coordinate of the other point
* @param y_size size of y_words
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void add_affine(const word x_words[], size_t x_size,
const word y_words[], size_t y_size,
std::vector<BigInt>& workspace);
/**
* Point doubling
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void mult2(std::vector<BigInt>& workspace);
/**
* Repeated point doubling
* @param i number of doublings to perform
* @param workspace temp space, at least WORKSPACE_SIZE elements
*/
void mult2i(size_t i, std::vector<BigInt>& workspace);
/**
* Point addition
* @param other the point to add to *this
* @param workspace temp space, at least WORKSPACE_SIZE elements
* @return other plus *this
*/
PointGFp plus(const PointGFp& other, std::vector<BigInt>& workspace) const
{
PointGFp x = (*this);
x.add(other, workspace);
return x;
}
/**
* Point doubling
* @param workspace temp space, at least WORKSPACE_SIZE elements
* @return *this doubled
*/
PointGFp double_of(std::vector<BigInt>& workspace) const
{
PointGFp x = (*this);
x.mult2(workspace);
return x;
}
/**
* Return the zero (aka infinite) point associated with this curve
*/
PointGFp zero() const { return PointGFp(m_curve); }
/**
* Return base curve of this point
* @result the curve over GF(p) of this point
*
* You should not need to use this
*/
const CurveGFp& get_curve() const { return m_curve; }
private:
CurveGFp m_curve;
BigInt m_coord_x, m_coord_y, m_coord_z;
};
/**
* Point multiplication operator
* @param scalar the scalar value
* @param point the point value
* @return scalar*point on the curve
*/
BOTAN_PUBLIC_API(2,0) PointGFp operator*(const BigInt& scalar, const PointGFp& point);
/**
* ECC point multiexponentiation - not constant time!
* @param p1 a point
* @param z1 a scalar
* @param p2 a point
* @param z2 a scalar
* @result (p1 * z1 + p2 * z2)
*/
BOTAN_PUBLIC_API(2,0) PointGFp multi_exponentiate(
const PointGFp& p1, const BigInt& z1,
const PointGFp& p2, const BigInt& z2);
// relational operators
inline bool operator!=(const PointGFp& lhs, const PointGFp& rhs)
{
return !(rhs == lhs);
}
// arithmetic operators
inline PointGFp operator-(const PointGFp& lhs)
{
return PointGFp(lhs).negate();
}
inline PointGFp operator+(const PointGFp& lhs, const PointGFp& rhs)
{
PointGFp tmp(lhs);
return tmp += rhs;
}
inline PointGFp operator-(const PointGFp& lhs, const PointGFp& rhs)
{
PointGFp tmp(lhs);
return tmp -= rhs;
}
inline PointGFp operator*(const PointGFp& point, const BigInt& scalar)
{
return scalar * point;
}
// encoding and decoding
inline secure_vector<uint8_t> BOTAN_DEPRECATED("Use PointGFp::encode")
EC2OSP(const PointGFp& point, uint8_t format)
{
std::vector<uint8_t> enc = point.encode(static_cast<PointGFp::Compression_Type>(format));
return secure_vector<uint8_t>(enc.begin(), enc.end());
}
/**
* Perform point decoding
* Use EC_Group::OS2ECP instead
*/
PointGFp BOTAN_PUBLIC_API(2,0) OS2ECP(const uint8_t data[], size_t data_len,
const CurveGFp& curve);
/**
* Perform point decoding
* Use EC_Group::OS2ECP instead
*
* @param data the encoded point
* @param data_len length of data in bytes
* @param curve_p the curve equation prime
* @param curve_a the curve equation a parameter
* @param curve_b the curve equation b parameter
*/
std::pair<BigInt, BigInt> BOTAN_UNSTABLE_API OS2ECP(const uint8_t data[], size_t data_len,
const BigInt& curve_p,
const BigInt& curve_a,
const BigInt& curve_b);
template<typename Alloc>
PointGFp OS2ECP(const std::vector<uint8_t, Alloc>& data, const CurveGFp& curve)
{ return OS2ECP(data.data(), data.size(), curve); }
class PointGFp_Var_Point_Precompute;
/**
* Deprecated API for point multiplication
* Use EC_Group::blinded_base_point_multiply or EC_Group::blinded_var_point_multiply
*/
class BOTAN_PUBLIC_API(2,0) BOTAN_DEPRECATED("See comments") Blinded_Point_Multiply final
{
public:
Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h = 0);
~Blinded_Point_Multiply();
PointGFp blinded_multiply(const BigInt& scalar, RandomNumberGenerator& rng);
private:
std::vector<BigInt> m_ws;
const BigInt& m_order;
std::unique_ptr<PointGFp_Var_Point_Precompute> m_point_mul;
};
}
namespace std {
template<>
inline void swap<Botan::PointGFp>(Botan::PointGFp& x, Botan::PointGFp& y)
{ x.swap(y); }
}
#endif
|