aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/ec_group/curve_gfp.h
blob: 888f87d463e698fd16445ddb3056a2e3c4f5372e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
* Elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
*     2010-2011,2012,2014 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_GFP_CURVE_H_
#define BOTAN_GFP_CURVE_H_

#include <botan/bigint.h>
#include <memory>

namespace Botan {

class BOTAN_UNSTABLE_API CurveGFp_Repr
   {
   public:
      virtual ~CurveGFp_Repr() = default;

      virtual const BigInt& get_p() const = 0;
      virtual const BigInt& get_a() const = 0;
      virtual const BigInt& get_b() const = 0;

      virtual size_t get_p_words() const = 0;

      virtual size_t get_ws_size() const = 0;

      virtual bool is_one(const BigInt& x) const = 0;

      virtual bool a_is_zero() const = 0;

      virtual bool a_is_minus_3() const = 0;

      /*
      * Returns to_curve_rep(get_a())
      */
      virtual const BigInt& get_a_rep() const = 0;

      /*
      * Returns to_curve_rep(get_b())
      */
      virtual const BigInt& get_b_rep() const = 0;

      /*
      * Returns to_curve_rep(1)
      */
      virtual const BigInt& get_1_rep() const = 0;

      virtual BigInt invert_element(const BigInt& x, secure_vector<word>& ws) const = 0;

      virtual void to_curve_rep(BigInt& x, secure_vector<word>& ws) const = 0;

      virtual void from_curve_rep(BigInt& x, secure_vector<word>& ws) const = 0;

      virtual void curve_mul(BigInt& z, const BigInt& x, const BigInt& y,
                             secure_vector<word>& ws) const = 0;

      virtual void curve_mul_words(BigInt& z,
                                   const word x_words[],
                                   const size_t x_size,
                                   const BigInt& y,
                                   secure_vector<word>& ws) const = 0;

      virtual void curve_sqr(BigInt& z, const BigInt& x,
                             secure_vector<word>& ws) const = 0;
   };

/**
* This class represents an elliptic curve over GF(p)
*
* There should not be any reason for applications to use this type.
* If you need EC primitives use the interfaces EC_Group and PointGFp
*
* It is likely this class will be removed entirely in a future major
* release.
*/
class BOTAN_UNSTABLE_API CurveGFp final
   {
   public:

      /**
      * Create an uninitialized CurveGFp
      */
      CurveGFp() = default;

      /**
      * Construct the elliptic curve E: y^2 = x^3 + ax + b over GF(p)
      * @param p prime number of the field
      * @param a first coefficient
      * @param b second coefficient
      */
      CurveGFp(const BigInt& p, const BigInt& a, const BigInt& b) :
         m_repr(choose_repr(p, a, b))
         {
         }

      CurveGFp(const CurveGFp&) = default;

      CurveGFp& operator=(const CurveGFp&) = default;

      /**
      * @return curve coefficient a
      */
      const BigInt& get_a() const { return m_repr->get_a(); }

      /**
      * @return curve coefficient b
      */
      const BigInt& get_b() const { return m_repr->get_b(); }

      /**
      * Get prime modulus of the field of the curve
      * @return prime modulus of the field of the curve
      */
      const BigInt& get_p() const { return m_repr->get_p(); }

      size_t get_p_words() const { return m_repr->get_p_words(); }

      size_t get_ws_size() const { return m_repr->get_ws_size(); }

      const BigInt& get_a_rep() const { return m_repr->get_a_rep(); }

      const BigInt& get_b_rep() const { return m_repr->get_b_rep(); }

      const BigInt& get_1_rep() const { return m_repr->get_1_rep(); }

      bool a_is_minus_3() const { return m_repr->a_is_minus_3(); }
      bool a_is_zero() const { return m_repr->a_is_zero(); }

      bool is_one(const BigInt& x) const { return m_repr->is_one(x); }

      BigInt invert_element(const BigInt& x, secure_vector<word>& ws) const
         {
         return m_repr->invert_element(x, ws);
         }

      void to_rep(BigInt& x, secure_vector<word>& ws) const
         {
         m_repr->to_curve_rep(x, ws);
         }

      void from_rep(BigInt& x, secure_vector<word>& ws) const
         {
         m_repr->from_curve_rep(x, ws);
         }

      BigInt from_rep(const BigInt& x, secure_vector<word>& ws) const
         {
         BigInt xt(x);
         m_repr->from_curve_rep(xt, ws);
         return xt;
         }

      // TODO: from_rep taking && ref

      void mul(BigInt& z, const BigInt& x, const BigInt& y, secure_vector<word>& ws) const
         {
         m_repr->curve_mul(z, x, y, ws);
         }

      void mul(BigInt& z, const word x_w[], size_t x_size,
               const BigInt& y, secure_vector<word>& ws) const
         {
         m_repr->curve_mul_words(z, x_w, x_size, y, ws);
         }

      void sqr(BigInt& z, const BigInt& x, secure_vector<word>& ws) const
         {
         m_repr->curve_sqr(z, x, ws);
         }

      BigInt mul(const BigInt& x, const BigInt& y, secure_vector<word>& ws) const
         {
         return mul_to_tmp(x, y, ws);
         }

      BigInt sqr(const BigInt& x, secure_vector<word>& ws) const
         {
         return sqr_to_tmp(x, ws);
         }

      BigInt mul_to_tmp(const BigInt& x, const BigInt& y, secure_vector<word>& ws) const
         {
         BigInt z;
         m_repr->curve_mul(z, x, y, ws);
         return z;
         }

      BigInt sqr_to_tmp(const BigInt& x, secure_vector<word>& ws) const
         {
         BigInt z;
         m_repr->curve_sqr(z, x, ws);
         return z;
         }

      void swap(CurveGFp& other)
         {
         std::swap(m_repr, other.m_repr);
         }

      /**
      * Equality operator
      * @param lhs a curve
      * @param rhs a curve
      * @return true iff lhs is the same as rhs
      */
      inline bool operator==(const CurveGFp& other) const
         {
         if(m_repr.get() == other.m_repr.get())
            return true;

         return (get_p() == other.get_p()) &&
                (get_a() == other.get_a()) &&
                (get_b() == other.get_b());
         }

   private:
      static std::shared_ptr<CurveGFp_Repr>
         choose_repr(const BigInt& p, const BigInt& a, const BigInt& b);

      std::shared_ptr<CurveGFp_Repr> m_repr;
   };

inline bool operator!=(const CurveGFp& lhs, const CurveGFp& rhs)
   {
   return !(lhs == rhs);
   }

}

namespace std {

template<> inline
void swap<Botan::CurveGFp>(Botan::CurveGFp& curve1,
                           Botan::CurveGFp& curve2) BOTAN_NOEXCEPT
   {
   curve1.swap(curve2);
   }

} // namespace std

#endif