aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/dlies/dlies.cpp
blob: a4603f0d77bcbb7297114a2a33a43a8e118907f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
* DLIES
* (C) 1999-2007 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/dlies.h>
#include <botan/internal/ct_utils.h>
#include <limits>

namespace Botan {

DLIES_Encryptor::DLIES_Encryptor(const DH_PrivateKey& own_priv_key,
                                 RandomNumberGenerator& rng,
                                 KDF* kdf,
                                 MessageAuthenticationCode* mac,
                                 size_t mac_key_length) :
   DLIES_Encryptor(own_priv_key, rng, kdf, nullptr, 0, mac, mac_key_length)
   {
   }

DLIES_Encryptor::DLIES_Encryptor(const DH_PrivateKey& own_priv_key,
                                 RandomNumberGenerator& rng,
                                 KDF* kdf,
                                 Cipher_Mode* cipher,
                                 size_t cipher_key_len,
                                 MessageAuthenticationCode* mac,
                                 size_t mac_key_length) :
   m_other_pub_key(),
   m_own_pub_key(own_priv_key.public_value()),
   m_ka(own_priv_key, rng, "Raw"),
   m_kdf(kdf),
   m_cipher(cipher),
   m_cipher_key_len(cipher_key_len),
   m_mac(mac),
   m_mac_keylen(mac_key_length),
   m_iv()
   {
   BOTAN_ASSERT_NONNULL(kdf);
   BOTAN_ASSERT_NONNULL(mac);
   }

std::vector<uint8_t> DLIES_Encryptor::enc(const uint8_t in[], size_t length,
                                       RandomNumberGenerator&) const
   {
   if(m_other_pub_key.empty())
      {
      throw Invalid_State("DLIES: The other key was never set");
      }

   // calculate secret value
   const SymmetricKey secret_value = m_ka.derive_key(0, m_other_pub_key);

   // derive secret key from secret value
   const size_t required_key_length = m_cipher ? m_cipher_key_len + m_mac_keylen : length + m_mac_keylen;
   const secure_vector<uint8_t> secret_keys = m_kdf->derive_key(required_key_length, secret_value.bits_of());

   if(secret_keys.size() != required_key_length)
      {
      throw Encoding_Error("DLIES: KDF did not provide sufficient output");
      }

   secure_vector<uint8_t> ciphertext(in, in + length);
   const size_t cipher_key_len = m_cipher ? m_cipher_key_len : length;

   if(m_cipher)
      {
      SymmetricKey enc_key(secret_keys.data(), cipher_key_len);
      m_cipher->set_key(enc_key);

      if(m_iv.size())
         {
         m_cipher->start(m_iv.bits_of());
         }

      m_cipher->finish(ciphertext);
      }
   else
      {
      xor_buf(ciphertext, secret_keys, cipher_key_len);
      }

   // calculate MAC
   m_mac->set_key(secret_keys.data() + cipher_key_len, m_mac_keylen);
   secure_vector<uint8_t> tag = m_mac->process(ciphertext);

   // out = (ephemeral) public key + ciphertext + tag
   secure_vector<uint8_t> out(m_own_pub_key.size() + ciphertext.size() + tag.size());
   buffer_insert(out, 0, m_own_pub_key);
   buffer_insert(out, 0 + m_own_pub_key.size(), ciphertext);
   buffer_insert(out, 0 + m_own_pub_key.size() + ciphertext.size(), tag);

   return unlock(out);
   }

/**
* Return the max size, in bytes, of a message
* Not_Implemented if DLIES is used in XOR encryption mode
*/
size_t DLIES_Encryptor::maximum_input_size() const
   {
   if(m_cipher)
      {
      // no limit in block cipher mode
      return std::numeric_limits<size_t>::max();
      }
   else
      {
      // No way to determine if the KDF will output enough bits for XORing with the plaintext?!
      throw Not_Implemented("Not implemented for XOR encryption mode");
      }
   }

DLIES_Decryptor::DLIES_Decryptor(const DH_PrivateKey& own_priv_key,
                                 RandomNumberGenerator& rng,
                                 KDF* kdf,
                                 Cipher_Mode* cipher,
                                 size_t cipher_key_len,
                                 MessageAuthenticationCode* mac,
                                 size_t mac_key_length) :
   m_pub_key_size(own_priv_key.public_value().size()),
   m_ka(own_priv_key, rng, "Raw"),
   m_kdf(kdf),
   m_cipher(cipher),
   m_cipher_key_len(cipher_key_len),
   m_mac(mac),
   m_mac_keylen(mac_key_length),
   m_iv()
   {
   BOTAN_ASSERT_NONNULL(kdf);
   BOTAN_ASSERT_NONNULL(mac);
   }

DLIES_Decryptor::DLIES_Decryptor(const DH_PrivateKey& own_priv_key,
                                 RandomNumberGenerator& rng,
                                 KDF* kdf,
                                 MessageAuthenticationCode* mac,
                                 size_t mac_key_length) :
   DLIES_Decryptor(own_priv_key, rng, kdf, nullptr, 0, mac, mac_key_length)
   {}

secure_vector<uint8_t> DLIES_Decryptor::do_decrypt(uint8_t& valid_mask,
      const uint8_t msg[], size_t length) const
   {
   if(length < m_pub_key_size + m_mac->output_length())
      {
      throw Decoding_Error("DLIES decryption: ciphertext is too short");
      }

   // calculate secret value
   std::vector<uint8_t> other_pub_key(msg, msg + m_pub_key_size);
   const SymmetricKey secret_value = m_ka.derive_key(0, other_pub_key);

   const size_t ciphertext_len = length - m_pub_key_size - m_mac->output_length();
   size_t cipher_key_len = m_cipher ? m_cipher_key_len : ciphertext_len;

   // derive secret key from secret value
   const size_t required_key_length = cipher_key_len + m_mac_keylen;
   secure_vector<uint8_t> secret_keys = m_kdf->derive_key(required_key_length, secret_value.bits_of());

   if(secret_keys.size() != required_key_length)
      {
      throw Encoding_Error("DLIES: KDF did not provide sufficient output");
      }

   secure_vector<uint8_t> ciphertext(msg + m_pub_key_size, msg + m_pub_key_size + ciphertext_len);

   // calculate MAC
   m_mac->set_key(secret_keys.data() + cipher_key_len, m_mac_keylen);
   secure_vector<uint8_t> calculated_tag = m_mac->process(ciphertext);

   // calculated tag == received tag ?
   secure_vector<uint8_t> tag(msg + m_pub_key_size + ciphertext_len,
                           msg + m_pub_key_size + ciphertext_len + m_mac->output_length());

   valid_mask = CT::expand_mask<uint8_t>(constant_time_compare(tag.data(), calculated_tag.data(), tag.size()));

   // decrypt
   if(m_cipher)
      {
      if(valid_mask)
         {
         SymmetricKey dec_key(secret_keys.data(), cipher_key_len);
         m_cipher->set_key(dec_key);

         try
            {
            // the decryption can fail:
            // e.g. Integrity_Failure is thrown if GCM is used and the message does not have a valid tag

            if(m_iv.size())
               {
               m_cipher->start(m_iv.bits_of());
               }

            m_cipher->finish(ciphertext);
            }
         catch(...)
            {
            valid_mask = 0;
            }

         }
      else
         {
         return secure_vector<uint8_t>();
         }
      }
   else
      {
      xor_buf(ciphertext, secret_keys.data(), cipher_key_len);
      }

   return ciphertext;
   }

}