1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
/*
* Discrete Logarithm Group
* (C) 1999-2008,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_DL_PARAM_H_
#define BOTAN_DL_PARAM_H_
#include <botan/bigint.h>
namespace Botan {
class Montgomery_Params;
class DL_Group_Data;
/**
* This class represents discrete logarithm groups. It holds a prime
* modulus p, a generator g, and (optionally) a prime q which is a
* factor of (p-1). In most cases g generates the order-q subgroup.
*/
class BOTAN_PUBLIC_API(2,0) DL_Group final
{
public:
/**
* Determine the prime creation for DL groups.
*/
enum PrimeType { Strong, Prime_Subgroup, DSA_Kosherizer };
/**
* The DL group encoding format variants.
*/
enum Format {
ANSI_X9_42,
ANSI_X9_57,
PKCS_3,
DSA_PARAMETERS = ANSI_X9_57,
DH_PARAMETERS = ANSI_X9_42,
ANSI_X9_42_DH_PARAMETERS = ANSI_X9_42,
PKCS3_DH_PARAMETERS = PKCS_3
};
/**
* Construct a DL group with uninitialized internal value.
* Use this constructor is you wish to set the groups values
* from a DER or PEM encoded group.
*/
DL_Group() = default;
/**
* Construct a DL group that is registered in the configuration.
* @param name the name that is configured in the global configuration
* for the desired group. If no configuration file is specified,
* the default values from the file policy.cpp will be used. For instance,
* use "modp/ietf/3072".
*/
DL_Group(const std::string& name);
/**
* Create a new group randomly.
* @param rng the random number generator to use
* @param type specifies how the creation of primes p and q shall
* be performed. If type=Strong, then p will be determined as a
* safe prime, and q will be chosen as (p-1)/2. If
* type=Prime_Subgroup and qbits = 0, then the size of q will be
* determined according to the estimated difficulty of the DL
* problem. If type=DSA_Kosherizer, DSA primes will be created.
* @param pbits the number of bits of p
* @param qbits the number of bits of q. Leave it as 0 to have
* the value determined according to pbits.
*/
DL_Group(RandomNumberGenerator& rng, PrimeType type,
size_t pbits, size_t qbits = 0);
/**
* Create a DSA group with a given seed.
* @param rng the random number generator to use
* @param seed the seed to use to create the random primes
* @param pbits the desired bit size of the prime p
* @param qbits the desired bit size of the prime q.
*/
DL_Group(RandomNumberGenerator& rng,
const std::vector<uint8_t>& seed,
size_t pbits = 1024, size_t qbits = 0);
/**
* Create a DL group.
* @param p the prime p
* @param g the base g
*/
DL_Group(const BigInt& p, const BigInt& g);
/**
* Create a DL group.
* @param p the prime p
* @param q the prime q
* @param g the base g
*/
DL_Group(const BigInt& p, const BigInt& q, const BigInt& g);
/**
* Decode a BER-encoded DL group param
*/
DL_Group(const uint8_t ber[], size_t ber_len, Format format);
/**
* Decode a BER-encoded DL group param
*/
template<typename Alloc>
DL_Group(const std::vector<uint8_t, Alloc>& ber, Format format) :
DL_Group(ber.data(), ber.size(), format) {}
/**
* Get the prime p.
* @return prime p
*/
const BigInt& get_p() const;
/**
* Get the prime q, returns zero if q is not used
* @return prime q
*/
const BigInt& get_q() const;
/**
* Get the base g.
* @return base g
*/
const BigInt& get_g() const;
/**
* Perform validity checks on the group.
* @param rng the rng to use
* @param strong whether to perform stronger by lengthier tests
* @return true if the object is consistent, false otherwise
*/
bool verify_group(RandomNumberGenerator& rng, bool strong = true) const;
/**
* Verify a public element, ie check if y = g^x for some x.
*
* This is not a perfect test. It verifies that 1 < y < p and (if q is set)
* that y is in the subgroup of size q.
*/
bool verify_public_element(const BigInt& y) const;
/**
* Verify a pair of elements y = g^x
*
* This verifies that 1 < x,y < p and that y=g^x mod p
*/
bool verify_element_pair(const BigInt& y, const BigInt& x) const;
/**
* Encode this group into a string using PEM encoding.
* @param format the encoding format
* @return string holding the PEM encoded group
*/
std::string PEM_encode(Format format) const;
/**
* Encode this group into a string using DER encoding.
* @param format the encoding format
* @return string holding the DER encoded group
*/
std::vector<uint8_t> DER_encode(Format format) const;
/**
* Reduce an integer modulo p
* @return x % p
*/
BigInt mod_p(const BigInt& x) const;
/**
* Multiply and reduce an integer modulo p
* @return (x*y) % p
*/
BigInt multiply_mod_p(const BigInt& x, const BigInt& y) const;
BigInt inverse_mod_p(const BigInt& x) const;
/**
* Modular exponentiation
* @return (g^x) % p
*/
BigInt power_g_p(const BigInt& x) const;
/**
* Multi-exponentiate
* Return (g^x * y^z) % p
*/
BigInt multi_exponentiate(const BigInt& x, const BigInt& y, const BigInt& z) const;
/**
* Return parameters for Montgomery reduction/exponentiation mod p
*/
std::shared_ptr<const Montgomery_Params> monty_params_p() const;
/**
* Return the size of p in bits
* Same as get_p().bits()
*/
size_t p_bits() const;
/**
* Return the size of p in bytes
* Same as get_p().bytes()
*/
size_t p_bytes() const;
/**
* Return size in bits of a secret exponent
*
* This attempts to balance between the attack costs of NFS
* (which depends on the size of the modulus) and Pollard's rho
* (which depends on the size of the exponent).
*
* It may vary over time for a particular group, if the attack
* costs change.
*/
size_t exponent_bits() const;
/**
* Return an estimate of the strength of this group against
* discrete logarithm attacks (eg NFS). Warning: since this only
* takes into account known attacks it is by necessity an
* overestimate of the actual strength.
*/
size_t estimated_strength() const;
/**
* Decode a DER/BER encoded group into this instance.
* @param ber a vector containing the DER/BER encoded group
* @param format the format of the encoded group
*/
void BER_decode(const std::vector<uint8_t>& ber, Format format);
/**
* Decode a PEM encoded group into this instance.
* @param pem the PEM encoding of the group
*/
void PEM_decode(const std::string& pem);
/**
* Return PEM representation of named DL group
*/
static std::string BOTAN_DEPRECATED("Use DL_Group(name).PEM_encode()")
PEM_for_named_group(const std::string& name);
/*
* For internal use only
*/
static std::shared_ptr<DL_Group_Data> DL_group_info(const std::string& name);
private:
static std::shared_ptr<DL_Group_Data> load_DL_group_info(const char* p_str,
const char* q_str,
const char* g_str);
static std::shared_ptr<DL_Group_Data> load_DL_group_info(const char* p_str,
const char* g_str);
static std::shared_ptr<DL_Group_Data>
BER_decode_DL_group(const uint8_t data[], size_t data_len, DL_Group::Format format);
const DL_Group_Data& data() const;
std::shared_ptr<DL_Group_Data> m_data;
};
}
#endif
|