1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
/*
* Discrete Logarithm Parameters
* (C) 1999-2008,2015,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/dl_group.h>
#include <botan/numthry.h>
#include <botan/reducer.h>
#include <botan/monty.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/pem.h>
#include <botan/workfactor.h>
#include <botan/internal/monty_exp.h>
namespace Botan {
class DL_Group_Data final
{
public:
DL_Group_Data(const BigInt& p, const BigInt& q, const BigInt& g) :
m_p(p), m_q(q), m_g(g),
m_mod_p(p),
m_monty_params(std::make_shared<Montgomery_Params>(m_p, m_mod_p)),
m_monty(monty_precompute(m_monty_params, m_g, /*window bits=*/4)),
m_p_bits(p.bits()),
m_estimated_strength(dl_work_factor(m_p_bits))
{}
~DL_Group_Data() = default;
DL_Group_Data(const DL_Group_Data& other) = delete;
DL_Group_Data& operator=(const DL_Group_Data& other) = delete;
const BigInt& p() const { return m_p; }
const BigInt& q() const { return m_q; }
const BigInt& g() const { return m_g; }
BigInt mod_p(const BigInt& x) const { return m_mod_p.reduce(x); }
BigInt multiply_mod_p(const BigInt& x, const BigInt& y) const
{
return m_mod_p.multiply(x, y);
}
size_t p_bits() const { return m_p_bits; }
size_t p_bytes() const { return (m_p_bits + 7) / 8; }
size_t estimated_strength() const { return m_estimated_strength; }
BigInt power_g_p(const BigInt& k) const { return monty_execute(*m_monty, k); }
private:
BigInt m_p;
BigInt m_q;
BigInt m_g;
Modular_Reducer m_mod_p;
std::shared_ptr<const Montgomery_Params> m_monty_params;
std::shared_ptr<const Montgomery_Exponentation_State> m_monty;
size_t m_p_bits;
size_t m_estimated_strength;
};
//static
std::shared_ptr<DL_Group_Data> DL_Group::BER_decode_DL_group(const uint8_t data[], size_t data_len, DL_Group::Format format)
{
BigInt p, q, g;
BER_Decoder decoder(data, data_len);
BER_Decoder ber = decoder.start_cons(SEQUENCE);
if(format == DL_Group::ANSI_X9_57)
{
ber.decode(p)
.decode(q)
.decode(g)
.verify_end();
}
else if(format == DL_Group::ANSI_X9_42)
{
ber.decode(p)
.decode(g)
.decode(q)
.discard_remaining();
}
else if(format == DL_Group::PKCS_3)
{
// q is left as zero
ber.decode(p)
.decode(g)
.discard_remaining();
}
else
throw Invalid_Argument("Unknown DL_Group encoding " + std::to_string(format));
return std::make_shared<DL_Group_Data>(p, q, g);
}
//static
std::shared_ptr<DL_Group_Data>
DL_Group::load_DL_group_info(const char* p_str,
const char* q_str,
const char* g_str)
{
const BigInt p(p_str);
const BigInt q(q_str);
const BigInt g(g_str);
return std::make_shared<DL_Group_Data>(p, q, g);
}
//static
std::shared_ptr<DL_Group_Data>
DL_Group::load_DL_group_info(const char* p_str,
const char* g_str)
{
const BigInt p(p_str);
const BigInt q = (p - 1) / 2;
const BigInt g(g_str);
return std::make_shared<DL_Group_Data>(p, q, g);
}
namespace {
DL_Group::Format pem_label_to_dl_format(const std::string& label)
{
if(label == "DH PARAMETERS")
return DL_Group::PKCS_3;
else if(label == "DSA PARAMETERS")
return DL_Group::ANSI_X9_57;
else if(label == "X942 DH PARAMETERS" || label == "X9.42 DH PARAMETERS")
return DL_Group::ANSI_X9_42;
else
throw Decoding_Error("DL_Group: Invalid PEM label " + label);
}
}
/*
* DL_Group Constructor
*/
DL_Group::DL_Group(const std::string& str)
{
// Either a name or a PEM block, try name first
m_data = DL_group_info(str);
if(m_data == nullptr)
{
try
{
std::string label;
const std::vector<uint8_t> ber = unlock(PEM_Code::decode(str, label));
Format format = pem_label_to_dl_format(label);
m_data = BER_decode_DL_group(ber.data(), ber.size(), format);
}
catch(...) {}
}
if(m_data == nullptr)
throw Invalid_Argument("DL_Group: Unknown group " + str);
}
namespace {
/*
* Create generator of the q-sized subgroup (DSA style generator)
*/
BigInt make_dsa_generator(const BigInt& p, const BigInt& q)
{
const BigInt e = (p - 1) / q;
if(e == 0 || (p - 1) % q > 0)
throw Invalid_Argument("make_dsa_generator q does not divide p-1");
for(size_t i = 0; i != PRIME_TABLE_SIZE; ++i)
{
// TODO precompute!
BigInt g = power_mod(PRIMES[i], e, p);
if(g > 1)
return g;
}
throw Internal_Error("DL_Group: Couldn't create a suitable generator");
}
}
/*
* DL_Group Constructor
*/
DL_Group::DL_Group(RandomNumberGenerator& rng,
PrimeType type, size_t pbits, size_t qbits)
{
if(pbits < 1024)
throw Invalid_Argument("DL_Group: prime size " + std::to_string(pbits) + " is too small");
if(type == Strong)
{
if(qbits != 0 && qbits != pbits - 1)
throw Invalid_Argument("Cannot create strong-prime DL_Group with specified q bits");
const BigInt p = random_safe_prime(rng, pbits);
const BigInt q = (p - 1) / 2;
/*
Always choose a generator that is quadratic reside mod p,
this forces g to be a generator of the subgroup of size q.
*/
BigInt g = 2;
if(jacobi(g, p) != 1)
{
// prime table does not contain 2
for(size_t i = 0; i < PRIME_TABLE_SIZE; ++i)
{
g = PRIMES[i];
if(jacobi(g, p) == 1)
break;
}
}
m_data = std::make_shared<DL_Group_Data>(p, q, g);
}
else if(type == Prime_Subgroup)
{
if(qbits == 0)
qbits = dl_exponent_size(pbits);
const BigInt q = random_prime(rng, qbits);
Modular_Reducer mod_2q(2*q);
BigInt X;
BigInt p;
while(p.bits() != pbits || !is_prime(p, rng))
{
X.randomize(rng, pbits);
p = X - mod_2q.reduce(X) + 1;
}
const BigInt g = make_dsa_generator(p, q);
m_data = std::make_shared<DL_Group_Data>(p, q, g);
}
else if(type == DSA_Kosherizer)
{
if(qbits == 0)
qbits = ((pbits <= 1024) ? 160 : 256);
BigInt p, q;
generate_dsa_primes(rng, p, q, pbits, qbits);
const BigInt g = make_dsa_generator(p, q);
m_data = std::make_shared<DL_Group_Data>(p, q, g);
}
else
{
throw Invalid_Argument("DL_Group unknown PrimeType");
}
}
/*
* DL_Group Constructor
*/
DL_Group::DL_Group(RandomNumberGenerator& rng,
const std::vector<uint8_t>& seed,
size_t pbits, size_t qbits)
{
BigInt p, q;
if(!generate_dsa_primes(rng, p, q, pbits, qbits, seed))
throw Invalid_Argument("DL_Group: The seed given does not generate a DSA group");
BigInt g = make_dsa_generator(p, q);
m_data = std::make_shared<DL_Group_Data>(p, q, g);
}
/*
* DL_Group Constructor
*/
DL_Group::DL_Group(const BigInt& p, const BigInt& g)
{
m_data = std::make_shared<DL_Group_Data>(p, 0, g);
}
/*
* DL_Group Constructor
*/
DL_Group::DL_Group(const BigInt& p, const BigInt& q, const BigInt& g)
{
m_data = std::make_shared<DL_Group_Data>(p, q, g);
}
const DL_Group_Data& DL_Group::data() const
{
if(m_data)
return *m_data;
throw Invalid_State("DL_Group uninitialized");
}
bool DL_Group::verify_public_element(const BigInt& y) const
{
const BigInt& p = get_p();
const BigInt& q = get_q();
if(y <= 1 || y >= p)
return false;
if(q.is_zero() == false)
{
if(power_mod(y, q, p) != 1)
return false;
}
return true;
}
bool DL_Group::verify_element_pair(const BigInt& y, const BigInt& x) const
{
const BigInt& p = get_p();
if(y <= 1 || y >= p || x <= 1 || x >= p)
return false;
if(y != power_g_p(x))
return false;
return true;
}
/*
* Verify the parameters
*/
bool DL_Group::verify_group(RandomNumberGenerator& rng,
bool strong) const
{
const BigInt& p = get_p();
const BigInt& q = get_q();
const BigInt& g = get_g();
if(g < 2 || p < 3 || q < 0)
return false;
const size_t prob = (strong) ? 128 : 10;
if(q != 0)
{
if((p - 1) % q != 0)
{
return false;
}
if(this->power_g_p(q) != 1)
{
return false;
}
if(!is_prime(q, rng, prob))
{
return false;
}
}
if(!is_prime(p, rng, prob))
{
return false;
}
return true;
}
/*
* Return the prime
*/
const BigInt& DL_Group::get_p() const
{
return data().p();
}
/*
* Return the generator
*/
const BigInt& DL_Group::get_g() const
{
return data().g();
}
/*
* Return the subgroup
*/
const BigInt& DL_Group::get_q() const
{
return data().q();
}
size_t DL_Group::p_bits() const
{
return data().p_bits();
}
size_t DL_Group::p_bytes() const
{
return data().p_bytes();
}
size_t DL_Group::estimated_strength() const
{
return data().estimated_strength();
}
BigInt DL_Group::inverse_mod_p(const BigInt& x) const
{
// precompute??
return inverse_mod(x, get_p());
}
BigInt DL_Group::mod_p(const BigInt& x) const
{
return data().mod_p(x);
}
BigInt DL_Group::multiply_mod_p(const BigInt& x, const BigInt& y) const
{
return data().multiply_mod_p(x, y);
}
BigInt DL_Group::power_g_p(const BigInt& x) const
{
return data().power_g_p(x);
}
/*
* DER encode the parameters
*/
std::vector<uint8_t> DL_Group::DER_encode(Format format) const
{
if(get_q().is_zero() && (format == ANSI_X9_57 || format == ANSI_X9_42))
throw Encoding_Error("Cannot encode DL_Group in ANSI formats when q param is missing");
if(format == ANSI_X9_57)
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(get_p())
.encode(get_q())
.encode(get_g())
.end_cons()
.get_contents_unlocked();
}
else if(format == ANSI_X9_42)
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(get_p())
.encode(get_g())
.encode(get_q())
.end_cons()
.get_contents_unlocked();
}
else if(format == PKCS_3)
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(get_p())
.encode(get_g())
.end_cons()
.get_contents_unlocked();
}
throw Invalid_Argument("Unknown DL_Group encoding " + std::to_string(format));
}
/*
* PEM encode the parameters
*/
std::string DL_Group::PEM_encode(Format format) const
{
const std::vector<uint8_t> encoding = DER_encode(format);
if(format == PKCS_3)
return PEM_Code::encode(encoding, "DH PARAMETERS");
else if(format == ANSI_X9_57)
return PEM_Code::encode(encoding, "DSA PARAMETERS");
else if(format == ANSI_X9_42)
return PEM_Code::encode(encoding, "X9.42 DH PARAMETERS");
else
throw Invalid_Argument("Unknown DL_Group encoding " + std::to_string(format));
}
DL_Group::DL_Group(const uint8_t ber[], size_t ber_len, Format format)
{
m_data = BER_decode_DL_group(ber, ber_len, format);
}
void DL_Group::BER_decode(const std::vector<uint8_t>& ber, Format format)
{
m_data = BER_decode_DL_group(ber.data(), ber.size(), format);
}
/*
* Decode PEM encoded parameters
*/
void DL_Group::PEM_decode(const std::string& pem)
{
std::string label;
const std::vector<uint8_t> ber = unlock(PEM_Code::decode(pem, label));
Format format = pem_label_to_dl_format(label);
m_data = BER_decode_DL_group(ber.data(), ber.size(), format);
}
//static
std::string DL_Group::PEM_for_named_group(const std::string& name)
{
DL_Group group(name);
DL_Group::Format format = group.get_q().is_zero() ? DL_Group::PKCS_3 : DL_Group::ANSI_X9_42;
return group.PEM_encode(format);
}
}
|