1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
/*
* PKCS#11 RSA
* (C) 2016 Daniel Neus, Sirrix AG
* (C) 2016 Philipp Weber, Sirrix AG
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/p11_rsa.h>
#if defined(BOTAN_HAS_RSA)
#include <botan/internal/p11_mechanism.h>
#include <botan/internal/pk_ops.h>
#include <botan/internal/pk_ops.h>
#include <botan/rng.h>
#include <botan/blinding.h>
namespace Botan {
namespace PKCS11 {
RSA_PublicKeyImportProperties::RSA_PublicKeyImportProperties(const BigInt& modulus, const BigInt& pub_exponent)
: PublicKeyProperties(KeyType::Rsa), m_modulus(modulus), m_pub_exponent(pub_exponent)
{
add_binary(AttributeType::Modulus, BigInt::encode(m_modulus));
add_binary(AttributeType::PublicExponent, BigInt::encode(m_pub_exponent));
}
RSA_PublicKeyGenerationProperties::RSA_PublicKeyGenerationProperties(Ulong bits)
: PublicKeyProperties(KeyType::Rsa)
{
add_numeric(AttributeType::ModulusBits, bits);
}
PKCS11_RSA_PublicKey::PKCS11_RSA_PublicKey(Session& session, ObjectHandle handle)
: Object(session, handle)
{
m_n = BigInt::decode(get_attribute_value(AttributeType::Modulus));
m_e = BigInt::decode(get_attribute_value(AttributeType::PublicExponent));
}
PKCS11_RSA_PublicKey::PKCS11_RSA_PublicKey(Session& session, const RSA_PublicKeyImportProperties& pubkey_props)
: RSA_PublicKey(pubkey_props.modulus(), pubkey_props.pub_exponent()), Object(session, pubkey_props)
{}
RSA_PrivateKeyImportProperties::RSA_PrivateKeyImportProperties(const BigInt& modulus, const BigInt& priv_exponent)
: PrivateKeyProperties(KeyType::Rsa), m_modulus(modulus), m_priv_exponent(priv_exponent)
{
add_binary(AttributeType::Modulus, BigInt::encode(m_modulus));
add_binary(AttributeType::PrivateExponent, BigInt::encode(m_priv_exponent));
}
PKCS11_RSA_PrivateKey::PKCS11_RSA_PrivateKey(Session& session, ObjectHandle handle)
: Object(session, handle)
{
m_n = BigInt::decode(get_attribute_value(AttributeType::Modulus));
m_e = BigInt::decode(get_attribute_value(AttributeType::PublicExponent));
}
PKCS11_RSA_PrivateKey::PKCS11_RSA_PrivateKey(Session& session, const RSA_PrivateKeyImportProperties& priv_key_props)
: Object(session, priv_key_props)
{
m_n = priv_key_props.modulus();
m_e = BigInt::decode(get_attribute_value(AttributeType::PublicExponent));
}
PKCS11_RSA_PrivateKey::PKCS11_RSA_PrivateKey(Session& session, uint32_t bits,
const RSA_PrivateKeyGenerationProperties& priv_key_props)
: RSA_PublicKey(), Object(session)
{
RSA_PublicKeyGenerationProperties pub_key_props(bits);
pub_key_props.set_encrypt(true);
pub_key_props.set_verify(true);
pub_key_props.set_token(false); // don't create a persistent public key object
ObjectHandle pub_key_handle = 0;
m_handle = 0;
Mechanism mechanism = { static_cast< CK_MECHANISM_TYPE >(MechanismType::RsaPkcsKeyPairGen), nullptr, 0 };
session.module()->C_GenerateKeyPair(session.handle(), &mechanism,
pub_key_props.data(), pub_key_props.count(), priv_key_props.data(), priv_key_props.count(),
&pub_key_handle, &m_handle);
m_n = BigInt::decode(get_attribute_value(AttributeType::Modulus));
m_e = BigInt::decode(get_attribute_value(AttributeType::PublicExponent));
}
RSA_PrivateKey PKCS11_RSA_PrivateKey::export_key() const
{
auto p = get_attribute_value(AttributeType::Prime1);
auto q = get_attribute_value(AttributeType::Prime2);
auto e = get_attribute_value(AttributeType::PublicExponent);
auto d = get_attribute_value(AttributeType::PrivateExponent);
auto n = get_attribute_value(AttributeType::Modulus);
return RSA_PrivateKey( BigInt::decode(p)
, BigInt::decode(q)
, BigInt::decode(e)
, BigInt::decode(d)
, BigInt::decode(n));
}
secure_vector<byte> PKCS11_RSA_PrivateKey::pkcs8_private_key() const
{
return export_key().pkcs8_private_key();
}
namespace {
// note: multiple-part decryption operations (with C_DecryptUpdate/C_DecryptFinal)
// are not supported (PK_Ops::Decryption does not provide an `update` method)
class PKCS11_RSA_Decryption_Operation final : public PK_Ops::Decryption
{
public:
typedef PKCS11_RSA_PrivateKey Key_Type;
PKCS11_RSA_Decryption_Operation(const PKCS11_RSA_PrivateKey& key,
const std::string& padding,
RandomNumberGenerator& rng)
: m_key(key),
m_mechanism(MechanismWrapper::create_rsa_crypt_mechanism(padding)),
m_powermod(m_key.get_e(), m_key.get_n()),
m_blinder(m_key.get_n(), rng,
[ this ](const BigInt& k) { return m_powermod(k); },
[ this ](const BigInt& k) { return inverse_mod(k, m_key.get_n()); })
{
m_bits = m_key.get_n().bits() - 1;
}
size_t max_input_bits() const override
{
return m_bits;
}
secure_vector<byte> decrypt(byte& valid_mask, const byte ciphertext[], size_t ciphertext_len) override
{
valid_mask = 0;
m_key.module()->C_DecryptInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
std::vector<byte> encrypted_data(ciphertext, ciphertext + ciphertext_len);
// blind for RSA/RAW decryption
if(! m_mechanism.padding_size())
{
encrypted_data = BigInt::encode(m_blinder.blind(BigInt::decode(encrypted_data)));
}
secure_vector<byte> decrypted_data;
m_key.module()->C_Decrypt(m_key.session().handle(), encrypted_data, decrypted_data);
// Unblind for RSA/RAW decryption
if(!m_mechanism.padding_size())
{
decrypted_data = BigInt::encode_1363(m_blinder.unblind(BigInt::decode(decrypted_data)), m_key.get_n().bits() / 8 );
}
valid_mask = 0xFF;
return decrypted_data;
}
private:
const PKCS11_RSA_PrivateKey& m_key;
MechanismWrapper m_mechanism;
size_t m_bits = 0;
Fixed_Exponent_Power_Mod m_powermod;
Blinder m_blinder;
};
// note: multiple-part encryption operations (with C_EncryptUpdate/C_EncryptFinal)
// are not supported (PK_Ops::Encryption does not provide an `update` method)
class PKCS11_RSA_Encryption_Operation : public PK_Ops::Encryption
{
public:
typedef PKCS11_RSA_PublicKey Key_Type;
PKCS11_RSA_Encryption_Operation(const PKCS11_RSA_PublicKey& key, const std::string& padding)
: m_key(key), m_mechanism(MechanismWrapper::create_rsa_crypt_mechanism(padding))
{
m_bits = 8 * (key.get_n().bytes() - m_mechanism.padding_size()) - 1;
}
size_t max_input_bits() const override
{
return m_bits;
}
secure_vector<byte> encrypt(const byte msg[], size_t msg_len, RandomNumberGenerator&) override
{
m_key.module()->C_EncryptInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
secure_vector<byte> encrytped_data;
m_key.module()->C_Encrypt(m_key.session().handle(), secure_vector<byte>(msg, msg + msg_len), encrytped_data);
return encrytped_data;
}
private:
const PKCS11_RSA_PublicKey& m_key;
MechanismWrapper m_mechanism;
size_t m_bits = 0;
};
class PKCS11_RSA_Signature_Operation : public PK_Ops::Signature
{
public:
typedef PKCS11_RSA_PrivateKey Key_Type;
PKCS11_RSA_Signature_Operation(const PKCS11_RSA_PrivateKey& key, const std::string& padding)
: m_key(key), m_mechanism(MechanismWrapper::create_rsa_sign_mechanism(padding))
{}
size_t message_part_size() const override
{
return m_key.get_n().bytes();
}
void update(const byte msg[], size_t msg_len) override
{
if(!m_initialized)
{
// first call to update: initialize and cache message because we can not determine yet whether a single- or multiple-part operation will be performed
m_key.module()->C_SignInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
m_initialized = true;
m_first_message = secure_vector<byte>(msg, msg + msg_len);
return;
}
if(!m_first_message.empty())
{
// second call to update: start multiple-part operation
m_key.module()->C_SignUpdate(m_key.session().handle(), m_first_message);
m_first_message.clear();
}
m_key.module()->C_SignUpdate(m_key.session().handle(), const_cast< Byte* >(msg), msg_len);
}
secure_vector<byte> sign(RandomNumberGenerator&) override
{
secure_vector<byte> signature;
if(!m_first_message.empty())
{
// single call to update: perform single-part operation
m_key.module()->C_Sign(m_key.session().handle(), m_first_message, signature);
m_first_message.clear();
}
else
{
// multiple calls to update (or none): finish multiple-part operation
m_key.module()->C_SignFinal(m_key.session().handle(), signature);
}
m_initialized = false;
return signature;
}
private:
const PKCS11_RSA_PrivateKey& m_key;
bool m_initialized = false;
secure_vector<byte> m_first_message;
MechanismWrapper m_mechanism;
};
class PKCS11_RSA_Verification_Operation : public PK_Ops::Verification
{
public:
typedef PKCS11_RSA_PublicKey Key_Type;
PKCS11_RSA_Verification_Operation(const PKCS11_RSA_PublicKey& key, const std::string& padding)
: m_key(key), m_mechanism(MechanismWrapper::create_rsa_sign_mechanism(padding))
{}
size_t message_part_size() const override
{
return m_key.get_n().bytes();
}
size_t max_input_bits() const override
{
return m_key.get_n().bits() - 1;
}
void update(const byte msg[], size_t msg_len) override
{
if(!m_initialized)
{
// first call to update: initialize and cache message because we can not determine yet whether a single- or multiple-part operation will be performed
m_key.module()->C_VerifyInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
m_initialized = true;
m_first_message = secure_vector<byte>(msg, msg + msg_len);
return;
}
if(!m_first_message.empty())
{
// second call to update: start multiple-part operation
m_key.module()->C_VerifyUpdate(m_key.session().handle(), m_first_message);
m_first_message.clear();
}
m_key.module()->C_VerifyUpdate(m_key.session().handle(), const_cast< Byte* >(msg), msg_len);
}
bool is_valid_signature(const byte sig[], size_t sig_len) override
{
ReturnValue return_value = ReturnValue::SignatureInvalid;
if(!m_first_message.empty())
{
// single call to update: perform single-part operation
m_key.module()->C_Verify(m_key.session().handle(), m_first_message.data(), m_first_message.size(),
const_cast< Byte* >(sig), sig_len, &return_value);
m_first_message.clear();
}
else
{
// multiple calls to update (or none): finish multiple-part operation
m_key.module()->C_VerifyFinal(m_key.session().handle(), const_cast< Byte* >(sig), sig_len, &return_value);
}
m_initialized = false;
if(return_value != ReturnValue::OK && return_value != ReturnValue::SignatureInvalid)
{
throw PKCS11_ReturnError(return_value);
}
return return_value == ReturnValue::OK;
}
private:
const PKCS11_RSA_PublicKey& m_key;
bool m_initialized = false;
secure_vector<byte> m_first_message;
MechanismWrapper m_mechanism;
};
}
std::unique_ptr<PK_Ops::Encryption>
PKCS11_RSA_PublicKey::create_encryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Encryption>(new PKCS11_RSA_Encryption_Operation(*this, params));
}
std::unique_ptr<PK_Ops::Verification>
PKCS11_RSA_PublicKey::create_verification_op(const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Verification>(new PKCS11_RSA_Verification_Operation(*this, params));
}
std::unique_ptr<PK_Ops::Decryption>
PKCS11_RSA_PrivateKey::create_decryption_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Decryption>(new PKCS11_RSA_Decryption_Operation(*this, params, rng));
}
std::unique_ptr<PK_Ops::Signature>
PKCS11_RSA_PrivateKey::create_signature_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Signature>(new PKCS11_RSA_Signature_Operation(*this, params));
}
PKCS11_RSA_KeyPair generate_rsa_keypair(Session& session, const RSA_PublicKeyGenerationProperties& pub_props,
const RSA_PrivateKeyGenerationProperties& priv_props)
{
ObjectHandle pub_key_handle = 0;
ObjectHandle priv_key_handle = 0;
Mechanism mechanism = { static_cast< CK_MECHANISM_TYPE >(MechanismType::RsaPkcsKeyPairGen), nullptr, 0 };
session.module()->C_GenerateKeyPair(session.handle(), &mechanism,
pub_props.data(), pub_props.count(), priv_props.data(), priv_props.count(),
&pub_key_handle, &priv_key_handle);
return std::make_pair(PKCS11_RSA_PublicKey(session, pub_key_handle), PKCS11_RSA_PrivateKey(session, priv_key_handle));
}
}
}
#endif
|