1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
* RSA operations provided by OpenSSL
* (C) 2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/openssl.h>
#if defined(BOTAN_HAS_RSA)
#include <botan/rsa.h>
#include <botan/internal/pk_ops_impl.h>
#include <botan/internal/ct_utils.h>
#include <functional>
#include <memory>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/err.h>
namespace Botan {
namespace {
std::pair<int, size_t> get_openssl_enc_pad(const std::string& eme)
{
ERR_load_crypto_strings();
if(eme == "Raw")
return std::make_pair(RSA_NO_PADDING, 0);
else if(eme == "EME-PKCS1-v1_5")
return std::make_pair(RSA_PKCS1_PADDING, 11);
else if(eme == "OAEP(SHA-1)" || eme == "EME1(SHA-1)")
return std::make_pair(RSA_PKCS1_OAEP_PADDING, 41);
else
throw Lookup_Error("OpenSSL RSA does not support EME " + eme);
}
class OpenSSL_RSA_Encryption_Operation : public PK_Ops::Encryption
{
public:
OpenSSL_RSA_Encryption_Operation(const RSA_PublicKey& rsa, int pad, size_t pad_overhead) :
m_openssl_rsa(nullptr, ::RSA_free), m_padding(pad)
{
const std::vector<byte> der = rsa.x509_subject_public_key();
const byte* der_ptr = der.data();
m_openssl_rsa.reset(::d2i_RSAPublicKey(nullptr, &der_ptr, der.size()));
if(!m_openssl_rsa)
throw OpenSSL_Error("d2i_RSAPublicKey");
m_bits = 8 * (n_size() - pad_overhead) - 1;
}
size_t max_input_bits() const override { return m_bits; };
secure_vector<byte> encrypt(const byte msg[], size_t msg_len,
RandomNumberGenerator&) override
{
const size_t mod_sz = n_size();
if(msg_len > mod_sz)
throw Invalid_Argument("Input too large for RSA key");
secure_vector<byte> outbuf(mod_sz);
secure_vector<byte> inbuf;
if(m_padding == RSA_NO_PADDING)
{
inbuf.resize(mod_sz);
copy_mem(&inbuf[mod_sz - msg_len], msg, msg_len);
}
else
{
inbuf.assign(msg, msg + msg_len);
}
int rc = ::RSA_public_encrypt(inbuf.size(), inbuf.data(), outbuf.data(),
m_openssl_rsa.get(), m_padding);
if(rc < 0)
throw OpenSSL_Error("RSA_public_encrypt");
return outbuf;
}
private:
size_t n_size() const { return ::RSA_size(m_openssl_rsa.get()); }
std::unique_ptr<RSA, std::function<void (RSA*)>> m_openssl_rsa;
size_t m_bits = 0;
int m_padding = 0;
};
class OpenSSL_RSA_Decryption_Operation : public PK_Ops::Decryption
{
public:
OpenSSL_RSA_Decryption_Operation(const RSA_PrivateKey& rsa, int pad) :
m_openssl_rsa(nullptr, ::RSA_free), m_padding(pad)
{
const secure_vector<byte> der = rsa.pkcs8_private_key();
const byte* der_ptr = der.data();
m_openssl_rsa.reset(d2i_RSAPrivateKey(nullptr, &der_ptr, der.size()));
if(!m_openssl_rsa)
throw OpenSSL_Error("d2i_RSAPrivateKey");
}
size_t max_input_bits() const override { return ::BN_num_bits(m_openssl_rsa->n) - 1; }
secure_vector<byte> decrypt(byte& valid_mask,
const byte msg[], size_t msg_len) override
{
secure_vector<byte> buf(::RSA_size(m_openssl_rsa.get()));
int rc = ::RSA_private_decrypt(msg_len, msg, buf.data(), m_openssl_rsa.get(), m_padding);
if(rc < 0 || static_cast<size_t>(rc) > buf.size())
{
valid_mask = 0;
buf.resize(0);
}
else
{
valid_mask = 0xFF;
buf.resize(rc);
}
if(m_padding == RSA_NO_PADDING)
{
return CT::strip_leading_zeros(buf);
}
return buf;
}
private:
std::unique_ptr<RSA, std::function<void (RSA*)>> m_openssl_rsa;
int m_padding = 0;
};
class OpenSSL_RSA_Verification_Operation : public PK_Ops::Verification_with_EMSA
{
public:
OpenSSL_RSA_Verification_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
PK_Ops::Verification_with_EMSA(emsa),
m_openssl_rsa(nullptr, ::RSA_free)
{
const std::vector<byte> der = rsa.x509_subject_public_key();
const byte* der_ptr = der.data();
m_openssl_rsa.reset(::d2i_RSAPublicKey(nullptr, &der_ptr, der.size()));
}
size_t max_input_bits() const override { return ::BN_num_bits(m_openssl_rsa->n) - 1; }
bool with_recovery() const override { return true; }
secure_vector<byte> verify_mr(const byte msg[], size_t msg_len) override
{
const size_t mod_sz = ::RSA_size(m_openssl_rsa.get());
if(msg_len > mod_sz)
throw Invalid_Argument("OpenSSL RSA verify input too large");
secure_vector<byte> inbuf(mod_sz);
copy_mem(&inbuf[mod_sz - msg_len], msg, msg_len);
secure_vector<byte> outbuf(mod_sz);
int rc = ::RSA_public_decrypt(inbuf.size(), inbuf.data(), outbuf.data(),
m_openssl_rsa.get(), RSA_NO_PADDING);
if(rc < 0)
throw Invalid_Argument("RSA_public_decrypt");
return CT::strip_leading_zeros(outbuf);
}
private:
std::unique_ptr<RSA, std::function<void (RSA*)>> m_openssl_rsa;
};
class OpenSSL_RSA_Signing_Operation : public PK_Ops::Signature_with_EMSA
{
public:
OpenSSL_RSA_Signing_Operation(const RSA_PrivateKey& rsa, const std::string& emsa) :
PK_Ops::Signature_with_EMSA(emsa),
m_openssl_rsa(nullptr, ::RSA_free)
{
const secure_vector<byte> der = rsa.pkcs8_private_key();
const byte* der_ptr = der.data();
m_openssl_rsa.reset(d2i_RSAPrivateKey(nullptr, &der_ptr, der.size()));
if(!m_openssl_rsa)
throw OpenSSL_Error("d2i_RSAPrivateKey");
}
secure_vector<byte> raw_sign(const byte msg[], size_t msg_len,
RandomNumberGenerator&) override
{
const size_t mod_sz = ::RSA_size(m_openssl_rsa.get());
if(msg_len > mod_sz)
throw Invalid_Argument("OpenSSL RSA sign input too large");
secure_vector<byte> inbuf(mod_sz);
copy_mem(&inbuf[mod_sz - msg_len], msg, msg_len);
secure_vector<byte> outbuf(mod_sz);
int rc = ::RSA_private_encrypt(inbuf.size(), inbuf.data(), outbuf.data(),
m_openssl_rsa.get(), RSA_NO_PADDING);
if(rc < 0)
throw OpenSSL_Error("RSA_private_encrypt");
return outbuf;
}
size_t max_input_bits() const override { return ::BN_num_bits(m_openssl_rsa->n) - 1; }
private:
std::unique_ptr<RSA, std::function<void (RSA*)>> m_openssl_rsa;
};
}
std::unique_ptr<PK_Ops::Encryption>
make_openssl_rsa_enc_op(const RSA_PublicKey& key, const std::string& params)
{
auto pad_info = get_openssl_enc_pad(params);
return std::unique_ptr<PK_Ops::Encryption>(
new OpenSSL_RSA_Encryption_Operation(key, pad_info.first, pad_info.second));
}
std::unique_ptr<PK_Ops::Decryption>
make_openssl_rsa_dec_op(const RSA_PrivateKey& key, const std::string& params)
{
auto pad_info = get_openssl_enc_pad(params);
return std::unique_ptr<PK_Ops::Decryption>(new OpenSSL_RSA_Decryption_Operation(key, pad_info.first));
}
std::unique_ptr<PK_Ops::Verification>
make_openssl_rsa_ver_op(const RSA_PublicKey& key, const std::string& params)
{
return std::unique_ptr<PK_Ops::Verification>(new OpenSSL_RSA_Verification_Operation(key, params));
}
std::unique_ptr<PK_Ops::Signature>
make_openssl_rsa_sig_op(const RSA_PrivateKey& key, const std::string& params)
{
return std::unique_ptr<PK_Ops::Signature>(new OpenSSL_RSA_Signing_Operation(key, params));
}
}
#endif // BOTAN_HAS_RSA
|