aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pk_pad/iso9796/iso9796.cpp
blob: 8608e723929c2f6ad99506b1a7397ebdaf2541cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * ISO-9796-2 - Digital signature schemes giving message recovery schemes 2 and 3
 * (C) 2016 Tobias Niemann, Hackmanit GmbH
 *
 * Botan is released under the Simplified BSD License (see license.txt)
 */

#include <botan/iso9796.h>
#include <botan/mgf1.h>
#include <botan/internal/bit_ops.h>
#include <botan/hash_id.h>
#include <botan/internal/ct_utils.h>

namespace Botan {

namespace {

secure_vector<uint8_t> iso9796_encoding(const secure_vector<uint8_t>& msg,
                                     size_t output_bits, std::unique_ptr<HashFunction>& hash, size_t SALT_SIZE, bool implicit, RandomNumberGenerator& rng)
   {
   const size_t output_length = (output_bits + 7) / 8;

   //set trailer length
   size_t tLength = 1;
   if(!implicit)
      {
      tLength = 2;
      }
   const size_t HASH_SIZE = hash->output_length();

   if(output_length <= HASH_SIZE + SALT_SIZE + tLength)
      {
      throw Encoding_Error("ISO9796-2::encoding_of: Output length is too small");
      }

   //calculate message capacity
   const size_t capacity = output_length
                           - HASH_SIZE - SALT_SIZE - tLength - 1;

   //msg1 is the recoverable and msg2 the unrecoverable message part.
   secure_vector<uint8_t> msg1;
   secure_vector<uint8_t> msg2;
   if(msg.size() > capacity)
      {
      msg1 = secure_vector<uint8_t> (msg.begin(), msg.begin() + capacity);
      msg2 = secure_vector<uint8_t> (msg.begin() + capacity, msg.end());
      hash->update(msg2);
      }
   else
      {
      msg1 = msg;
      }
   msg2 = hash->final();

   //compute H(C||msg1 ||H(msg2)||S)
   uint64_t msgLength = msg1.size();
   secure_vector<uint8_t> salt = rng.random_vec(SALT_SIZE);
   hash->update_be(msgLength * 8);
   hash->update(msg1);
   hash->update(msg2);
   hash->update(salt);
   secure_vector<uint8_t> H = hash->final();

   secure_vector<uint8_t> EM(output_length);

   //compute message offset.
   size_t offset = output_length - HASH_SIZE - SALT_SIZE - tLength
                   - msgLength - 1;

   //insert message border (0x01), msg1 and salt into the output buffer
   EM[offset] = 0x01;
   buffer_insert(EM, offset + 1, msg1);
   buffer_insert(EM, offset + 1 + msgLength, salt);

   //apply mask
   mgf1_mask(*hash, H.data(), HASH_SIZE, EM.data(),
             output_length - HASH_SIZE - tLength);
   buffer_insert(EM, output_length - HASH_SIZE - tLength, H);
   //set implicit/ISO trailer
   if(!implicit)
      {
      uint8_t hash_id = ieee1363_hash_id(hash->name());
      if(!hash_id)
         {
         throw Encoding_Error("ISO9796-2::encoding_of: no hash identifier for " + hash->name());
         }
      EM[output_length - 1] = 0xCC;
      EM[output_length - 2] = hash_id;

      }
   else
      {
      EM[output_length - 1] = 0xBC;
      }
   //clear the leftmost bit (confer bouncy castle)
   EM[0] &= 0x7F;

   return EM;
   }

bool iso9796_verification(const secure_vector<uint8_t>& const_coded,
                          const secure_vector<uint8_t>& raw, size_t key_bits, std::unique_ptr<HashFunction>& hash, size_t SALT_SIZE)
   {
   const size_t HASH_SIZE = hash->output_length();
   const size_t KEY_BYTES = (key_bits + 7) / 8;

   if(const_coded.size() != KEY_BYTES)
      {
      return false;
      }
   //get trailer length
   size_t tLength;
   if(const_coded[const_coded.size() - 1] == 0xBC)
      {
      tLength = 1;
      }
   else
      {
      uint8_t hash_id = ieee1363_hash_id(hash->name());
      if((!const_coded[const_coded.size() - 2]) || (const_coded[const_coded.size() - 2] != hash_id) ||
            (const_coded[const_coded.size() - 1] != 0xCC))
         {
         return false; //in case of wrong ISO trailer.
         }
      tLength = 2;
      }

   secure_vector<uint8_t> coded = const_coded;
   
   CT::poison(coded.data(), coded.size());
   //remove mask
   uint8_t* DB = coded.data();
   const size_t DB_size = coded.size() - HASH_SIZE - tLength;

   const uint8_t* H = &coded[DB_size];

   mgf1_mask(*hash, H, HASH_SIZE, DB, DB_size);
   //clear the leftmost bit (confer bouncy castle)
   DB[0] &= 0x7F;

   //recover msg1 and salt
   size_t msg1_offset = 1;
   uint8_t waiting_for_delim = 0xFF;
   uint8_t bad_input = 0;
   for(size_t j = 0; j < DB_size; ++j)
      {
      const uint8_t one_m = CT::is_equal<uint8_t>(DB[j], 0x01);
      const uint8_t zero_m = CT::is_zero(DB[j]);
      const uint8_t add_m = waiting_for_delim & zero_m;
      
      bad_input |= waiting_for_delim & ~(zero_m | one_m);
      msg1_offset += CT::select<uint8_t>(add_m, 1, 0);
      
      waiting_for_delim &= zero_m;
      }
   
   //invalid, if delimiter 0x01 was not found or msg1_offset is too big
   bad_input |= waiting_for_delim;
   bad_input |= CT::is_less(coded.size(), tLength + HASH_SIZE + msg1_offset + SALT_SIZE);

   //in case that msg1_offset is too big, just continue with offset = 0. 
   msg1_offset = CT::select<size_t>(bad_input, 0, msg1_offset);

   CT::unpoison(coded.data(), coded.size());
   CT::unpoison(msg1_offset);

   secure_vector<uint8_t> msg1(coded.begin() + msg1_offset,
                            coded.end() - tLength - HASH_SIZE - SALT_SIZE);
   secure_vector<uint8_t> salt(coded.begin() + msg1_offset + msg1.size(),
                            coded.end() - tLength - HASH_SIZE);

   //compute H2(C||msg1||H(msg2)||S*). * indicates a recovered value
   const size_t capacity = (key_bits - 2 + 7) / 8 - HASH_SIZE
                           - SALT_SIZE - tLength - 1;
   secure_vector<uint8_t> msg1raw;
   secure_vector<uint8_t> msg2;
   if(raw.size() > capacity)
      {
      msg1raw = secure_vector<uint8_t> (raw.begin(), raw.begin() + capacity);
      msg2 = secure_vector<uint8_t> (raw.begin() + capacity, raw.end());
      hash->update(msg2);
      }
   else
      {
      msg1raw = raw;
      }
   msg2 = hash->final();

   uint64_t msg1rawLength = msg1raw.size();
   hash->update_be(msg1rawLength * 8);
   hash->update(msg1raw);
   hash->update(msg2);
   hash->update(salt);
   secure_vector<uint8_t> H3 = hash->final();

   //compute H3(C*||msg1*||H(msg2)||S*) * indicates a recovered value
   uint64_t msgLength = msg1.size();
   hash->update_be(msgLength * 8);
   hash->update(msg1);
   hash->update(msg2);
   hash->update(salt);
   secure_vector<uint8_t> H2 = hash->final();
   
   //check if H3 == H2
   bad_input |= CT::is_equal<uint8_t>(constant_time_compare(H3.data(), H2.data(), HASH_SIZE), false);
   
   CT::unpoison(bad_input);
   return (bad_input == 0);
   }

}
/*
 *  ISO-9796-2 signature scheme 2
 *  DS 2 is probabilistic
 */
void ISO_9796_DS2::update(const uint8_t input[], size_t length)
   {
   //need to buffer message completely, before digest
   m_msg_buffer.insert(m_msg_buffer.end(), input, input+length);
   }

/*
 * Return the raw (unencoded) data
 */
secure_vector<uint8_t> ISO_9796_DS2::raw_data()
   {
   secure_vector<uint8_t> retbuffer = m_msg_buffer;
   m_msg_buffer.clear();
   return retbuffer;
   }

/*
 *  ISO-9796-2 scheme 2 encode operation
 */
secure_vector<uint8_t> ISO_9796_DS2::encoding_of(const secure_vector<uint8_t>& msg,
      size_t output_bits, RandomNumberGenerator& rng)
   {
   return iso9796_encoding(msg, output_bits, m_hash, m_SALT_SIZE, m_implicit, rng);
   }

/*
 * ISO-9796-2 scheme 2 verify operation
 */
bool ISO_9796_DS2::verify(const secure_vector<uint8_t>& const_coded,
                          const secure_vector<uint8_t>& raw, size_t key_bits)
   {
   return iso9796_verification(const_coded,raw,key_bits,m_hash,m_SALT_SIZE);
   }

/*
 *  ISO-9796-2 signature scheme 3
 *  DS 3 is deterministic and equals DS2 without salt
 */
void ISO_9796_DS3::update(const uint8_t input[], size_t length)
   {
   //need to buffer message completely, before digest
   m_msg_buffer.insert(m_msg_buffer.end(), input, input+length);
   }

/*
 * Return the raw (unencoded) data
 */
secure_vector<uint8_t> ISO_9796_DS3::raw_data()
   {
   secure_vector<uint8_t> retbuffer = m_msg_buffer;
   m_msg_buffer.clear();
   return retbuffer;
   }

/*
 *  ISO-9796-2 scheme 3 encode operation
 */
secure_vector<uint8_t> ISO_9796_DS3::encoding_of(const secure_vector<uint8_t>& msg,
      size_t output_bits, RandomNumberGenerator& rng)
   {
   return iso9796_encoding(msg, output_bits, m_hash, 0, m_implicit, rng);
   }

/*
 * ISO-9796-2 scheme 3 verify operation
 */
bool ISO_9796_DS3::verify(const secure_vector<uint8_t>& const_coded,
                          const secure_vector<uint8_t>& raw, size_t key_bits)
   {
   return iso9796_verification(const_coded, raw, key_bits, m_hash, 0);
   }
}