1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/*
* PSSR
* (C) 1999-2007 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pssr.h>
#include <botan/mgf1.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/xor_buf.h>
namespace Botan {
/*
* PSSR Update Operation
*/
void PSSR::update(const byte input[], size_t length)
{
hash->update(input, length);
}
/*
* Return the raw (unencoded) data
*/
secure_vector<byte> PSSR::raw_data()
{
return hash->final();
}
/*
* PSSR Encode Operation
*/
secure_vector<byte> PSSR::encoding_of(const secure_vector<byte>& msg,
size_t output_bits,
RandomNumberGenerator& rng)
{
const size_t HASH_SIZE = hash->output_length();
if(msg.size() != HASH_SIZE)
throw Encoding_Error("PSSR::encoding_of: Bad input length");
if(output_bits < 8*HASH_SIZE + 8*SALT_SIZE + 9)
throw Encoding_Error("PSSR::encoding_of: Output length is too small");
const size_t output_length = (output_bits + 7) / 8;
secure_vector<byte> salt = rng.random_vec(SALT_SIZE);
for(size_t j = 0; j != 8; ++j)
hash->update(0);
hash->update(msg);
hash->update(salt);
secure_vector<byte> H = hash->final();
secure_vector<byte> EM(output_length);
EM[output_length - HASH_SIZE - SALT_SIZE - 2] = 0x01;
buffer_insert(EM, output_length - 1 - HASH_SIZE - SALT_SIZE, salt);
mgf1_mask(*hash, &H[0], HASH_SIZE, &EM[0], output_length - HASH_SIZE - 1);
EM[0] &= 0xFF >> (8 * ((output_bits + 7) / 8) - output_bits);
buffer_insert(EM, output_length - 1 - HASH_SIZE, H);
EM[output_length-1] = 0xBC;
return EM;
}
/*
* PSSR Decode/Verify Operation
*/
bool PSSR::verify(const secure_vector<byte>& const_coded,
const secure_vector<byte>& raw, size_t key_bits)
{
const size_t HASH_SIZE = hash->output_length();
const size_t KEY_BYTES = (key_bits + 7) / 8;
if(key_bits < 8*HASH_SIZE + 9)
return false;
if(raw.size() != HASH_SIZE)
return false;
if(const_coded.size() > KEY_BYTES || const_coded.size() <= 1)
return false;
if(const_coded[const_coded.size()-1] != 0xBC)
return false;
secure_vector<byte> coded = const_coded;
if(coded.size() < KEY_BYTES)
{
secure_vector<byte> temp(KEY_BYTES);
buffer_insert(temp, KEY_BYTES - coded.size(), coded);
coded = temp;
}
const size_t TOP_BITS = 8 * ((key_bits + 7) / 8) - key_bits;
if(TOP_BITS > 8 - high_bit(coded[0]))
return false;
byte* DB = &coded[0];
const size_t DB_size = coded.size() - HASH_SIZE - 1;
const byte* H = &coded[DB_size];
const size_t H_size = HASH_SIZE;
mgf1_mask(*hash, &H[0], H_size, &DB[0], DB_size);
DB[0] &= 0xFF >> TOP_BITS;
size_t salt_offset = 0;
for(size_t j = 0; j != DB_size; ++j)
{
if(DB[j] == 0x01)
{ salt_offset = j + 1; break; }
if(DB[j])
return false;
}
if(salt_offset == 0)
return false;
for(size_t j = 0; j != 8; ++j)
hash->update(0);
hash->update(raw);
hash->update(&DB[salt_offset], DB_size - salt_offset);
secure_vector<byte> H2 = hash->final();
return same_mem(&H[0], &H2[0], HASH_SIZE);
}
PSSR::PSSR(HashFunction* h) :
SALT_SIZE(h->output_length()), hash(h)
{
}
PSSR::PSSR(HashFunction* h, size_t salt_size) :
SALT_SIZE(salt_size), hash(h)
{
}
}
|