1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* EME1 (aka OAEP)
* (C) 1999-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/eme1.h>
#include <botan/mgf1.h>
#include <botan/mem_ops.h>
#include <memory>
namespace Botan {
/*
* EME1 Pad Operation
*/
secure_vector<byte> EME1::pad(const byte in[], size_t in_length,
size_t key_length,
RandomNumberGenerator& rng) const
{
key_length /= 8;
if(key_length < in_length + 2*Phash.size() + 1)
throw Invalid_Argument("EME1: Input is too large");
secure_vector<byte> out(key_length);
rng.randomize(&out[0], Phash.size());
buffer_insert(out, Phash.size(), &Phash[0], Phash.size());
out[out.size() - in_length - 1] = 0x01;
buffer_insert(out, out.size() - in_length, in, in_length);
mgf->mask(&out[0], Phash.size(),
&out[Phash.size()], out.size() - Phash.size());
mgf->mask(&out[Phash.size()], out.size() - Phash.size(),
&out[0], Phash.size());
return out;
}
/*
* EME1 Unpad Operation
*/
secure_vector<byte> EME1::unpad(const byte in[], size_t in_length,
size_t key_length) const
{
/*
Must be careful about error messages here; if an attacker can
distinguish them, it is easy to use the differences as an oracle to
find the secret key, as described in "A Chosen Ciphertext Attack on
RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in
PKCS #1 v2.0", James Manger, Crypto 2001
Also have to be careful about timing attacks! Pointed out by Falko
Strenzke.
*/
key_length /= 8;
// Invalid input: truncate to zero length input, causing later
// checks to fail
if(in_length > key_length)
in_length = 0;
secure_vector<byte> input(key_length);
buffer_insert(input, key_length - in_length, in, in_length);
mgf->mask(&input[Phash.size()], input.size() - Phash.size(),
&input[0], Phash.size());
mgf->mask(&input[0], Phash.size(),
&input[Phash.size()], input.size() - Phash.size());
bool waiting_for_delim = true;
bool bad_input = false;
size_t delim_idx = 2 * Phash.size();
/*
* GCC 4.5 on x86-64 compiles this in a way that is still vunerable
* to timing analysis. Other compilers, or GCC on other platforms,
* may or may not.
*/
for(size_t i = delim_idx; i < input.size(); ++i)
{
const bool zero_p = !input[i];
const bool one_p = input[i] == 0x01;
const bool add_1 = waiting_for_delim && zero_p;
bad_input |= waiting_for_delim && !(zero_p || one_p);
delim_idx += add_1;
waiting_for_delim &= zero_p;
}
// If we never saw any non-zero byte, then it's not valid input
bad_input |= waiting_for_delim;
bad_input |= !same_mem(&input[Phash.size()], &Phash[0], Phash.size());
if(bad_input)
throw Decoding_Error("Invalid EME1 encoding");
return secure_vector<byte>(&input[delim_idx + 1], &input[input.size()]);
}
/*
* Return the max input size for a given key size
*/
size_t EME1::maximum_input_size(size_t keybits) const
{
if(keybits / 8 > 2*Phash.size() + 1)
return ((keybits / 8) - 2*Phash.size() - 1);
else
return 0;
}
/*
* EME1 Constructor
*/
EME1::EME1(HashFunction* hash, const std::string& P)
{
Phash = hash->process(P);
mgf = new MGF1(hash);
}
}
|