1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/*
* PBKDF2
* (C) 1999-2007 Jack Lloyd
* (C) 2018 Ribose Inc
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pbkdf2.h>
#include <botan/exceptn.h>
#include <botan/internal/rounding.h>
#include <botan/internal/timer.h>
namespace Botan {
namespace {
void pbkdf2_set_key(MessageAuthenticationCode& prf,
const char* password,
size_t password_len)
{
try
{
prf.set_key(cast_char_ptr_to_uint8(password), password_len);
}
catch(Invalid_Key_Length&)
{
throw Exception("PBKDF2 cannot accept passphrase of the given size");
}
}
}
size_t
pbkdf2(MessageAuthenticationCode& prf,
uint8_t out[],
size_t out_len,
const std::string& password,
const uint8_t salt[], size_t salt_len,
size_t iterations,
std::chrono::milliseconds msec)
{
if(iterations == 0)
{
iterations = PBKDF2(prf, out_len, msec).iterations();
}
PBKDF2 pbkdf2(prf, iterations);
pbkdf2.derive_key(out, out_len,
password.c_str(), password.size(),
salt, salt_len);
return iterations;
}
namespace {
size_t tune_pbkdf2(MessageAuthenticationCode& prf,
size_t output_length,
uint32_t msec)
{
const size_t prf_sz = prf.output_length();
BOTAN_ASSERT_NOMSG(prf_sz > 0);
secure_vector<uint8_t> U(prf_sz);
const size_t trial_iterations = 10000;
// Short output ensures we only need a single PBKDF2 block
Timer timer("PBKDF2");
const std::chrono::milliseconds tune_msec(30);
prf.set_key(nullptr, 0);
timer.run_until_elapsed(tune_msec, [&]() {
uint8_t out[16] = { 0 };
uint8_t salt[16] = { 0 };
pbkdf2(prf, out, sizeof(out), salt, sizeof(salt), trial_iterations);
});
if(timer.events() == 0)
return trial_iterations;
const uint64_t duration_nsec = timer.value() / timer.events();
const uint64_t desired_nsec = static_cast<uint64_t>(msec) * 1000000;
if(duration_nsec > desired_nsec)
return trial_iterations;
const size_t blocks_needed = (output_length + prf_sz - 1) / prf_sz;
const size_t multiplier = (desired_nsec / duration_nsec / blocks_needed);
if(multiplier == 0)
return trial_iterations;
else
return trial_iterations * multiplier;
}
}
void pbkdf2(MessageAuthenticationCode& prf,
uint8_t out[],
size_t out_len,
const uint8_t salt[],
size_t salt_len,
size_t iterations)
{
clear_mem(out, out_len);
if(out_len == 0)
return;
const size_t prf_sz = prf.output_length();
BOTAN_ASSERT_NOMSG(prf_sz > 0);
secure_vector<uint8_t> U(prf_sz);
uint32_t counter = 1;
while(out_len)
{
const size_t prf_output = std::min<size_t>(prf_sz, out_len);
prf.update(salt, salt_len);
prf.update_be(counter++);
prf.final(U.data());
xor_buf(out, U.data(), prf_output);
for(size_t i = 1; i != iterations; ++i)
{
prf.update(U);
prf.final(U.data());
xor_buf(out, U.data(), prf_output);
}
out_len -= prf_output;
out += prf_output;
}
}
// PBKDF interface
size_t
PKCS5_PBKDF2::pbkdf(uint8_t key[], size_t key_len,
const std::string& password,
const uint8_t salt[], size_t salt_len,
size_t iterations,
std::chrono::milliseconds msec) const
{
if(iterations == 0)
{
iterations = PBKDF2(*m_mac, key_len, msec).iterations();
}
PBKDF2 pbkdf2(*m_mac, iterations);
pbkdf2.derive_key(key, key_len,
password.c_str(), password.size(),
salt, salt_len);
return iterations;
}
std::string PKCS5_PBKDF2::name() const
{
return "PBKDF2(" + m_mac->name() + ")";
}
PBKDF* PKCS5_PBKDF2::clone() const
{
return new PKCS5_PBKDF2(m_mac->clone());
}
// PasswordHash interface
PBKDF2::PBKDF2(const MessageAuthenticationCode& prf, size_t olen, std::chrono::milliseconds msec) :
m_prf(prf.clone()),
m_iterations(tune_pbkdf2(*m_prf, olen, msec.count()))
{}
std::string PBKDF2::to_string() const
{
return "PBKDF2(" + m_prf->name() + "," + std::to_string(m_iterations) + ")";
}
void PBKDF2::derive_key(uint8_t out[], size_t out_len,
const char* password, const size_t password_len,
const uint8_t salt[], size_t salt_len) const
{
pbkdf2_set_key(*m_prf, password, password_len);
pbkdf2(*m_prf, out, out_len, salt, salt_len, m_iterations);
}
std::string PBKDF2_Family::name() const
{
return "PBKDF2(" + m_prf->name() + ")";
}
std::unique_ptr<PasswordHash> PBKDF2_Family::tune(size_t output_len, std::chrono::milliseconds msec, size_t) const
{
return std::unique_ptr<PasswordHash>(new PBKDF2(*m_prf, output_len, msec));
}
std::unique_ptr<PasswordHash> PBKDF2_Family::default_params() const
{
return std::unique_ptr<PasswordHash>(new PBKDF2(*m_prf, 150000));
}
std::unique_ptr<PasswordHash> PBKDF2_Family::from_params(size_t iter, size_t, size_t) const
{
return std::unique_ptr<PasswordHash>(new PBKDF2(*m_prf, iter));
}
std::unique_ptr<PasswordHash> PBKDF2_Family::from_iterations(size_t iter) const
{
return std::unique_ptr<PasswordHash>(new PBKDF2(*m_prf, iter));
}
}
|