1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
/*
* PKCS #5 PBES2
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/pbes2.h>
#include <botan/pbkdf2.h>
#include <botan/algo_factory.h>
#include <botan/libstate.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/parsing.h>
#include <botan/alg_id.h>
#include <botan/oids.h>
#include <botan/lookup.h>
#include <algorithm>
namespace Botan {
/*
* Encrypt some bytes using PBES2
*/
void PBE_PKCS5v20::write(const byte input[], size_t length)
{
pipe.write(input, length);
flush_pipe(true);
}
/*
* Start encrypting with PBES2
*/
void PBE_PKCS5v20::start_msg()
{
pipe.append(get_cipher(block_cipher->name() + "/CBC/PKCS7",
key, iv, direction));
pipe.start_msg();
if(pipe.message_count() > 1)
pipe.set_default_msg(pipe.default_msg() + 1);
}
/*
* Finish encrypting with PBES2
*/
void PBE_PKCS5v20::end_msg()
{
pipe.end_msg();
flush_pipe(false);
pipe.reset();
}
/*
* Flush the pipe
*/
void PBE_PKCS5v20::flush_pipe(bool safe_to_skip)
{
if(safe_to_skip && pipe.remaining() < 64)
return;
secure_vector<byte> buffer(DEFAULT_BUFFERSIZE);
while(pipe.remaining())
{
const size_t got = pipe.read(&buffer[0], buffer.size());
send(buffer, got);
}
}
/*
* Encode PKCS#5 PBES2 parameters
*/
std::vector<byte> PBE_PKCS5v20::encode_params() const
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(
AlgorithmIdentifier("PKCS5.PBKDF2",
DER_Encoder()
.start_cons(SEQUENCE)
.encode(salt, OCTET_STRING)
.encode(iterations)
.encode(key_length)
.encode_if(
m_prf->name() != "HMAC(SHA-160)",
AlgorithmIdentifier(m_prf->name(),
AlgorithmIdentifier::USE_NULL_PARAM))
.end_cons()
.get_contents_unlocked()
)
)
.encode(
AlgorithmIdentifier(block_cipher->name() + "/CBC",
DER_Encoder().encode(iv, OCTET_STRING).get_contents_unlocked()
)
)
.end_cons()
.get_contents_unlocked();
}
/*
* Return an OID for PBES2
*/
OID PBE_PKCS5v20::get_oid() const
{
return OIDS::lookup("PBE-PKCS5v20");
}
std::string PBE_PKCS5v20::name() const
{
return "PBE-PKCS5v20(" + block_cipher->name() + "," +
m_prf->name() + ")";
}
/*
* PKCS#5 v2.0 PBE Constructor
*/
PBE_PKCS5v20::PBE_PKCS5v20(BlockCipher* cipher,
MessageAuthenticationCode* mac,
const std::string& passphrase,
std::chrono::milliseconds msec,
RandomNumberGenerator& rng) :
direction(ENCRYPTION),
block_cipher(cipher),
m_prf(mac),
salt(rng.random_vec(12)),
iv(rng.random_vec(block_cipher->block_size())),
iterations(0),
key_length(block_cipher->maximum_keylength())
{
PKCS5_PBKDF2 pbkdf(m_prf->clone());
key = pbkdf.derive_key(key_length, passphrase,
&salt[0], salt.size(),
msec, iterations).bits_of();
}
/*
* PKCS#5 v2.0 PBE Constructor
*/
PBE_PKCS5v20::PBE_PKCS5v20(const std::vector<byte>& params,
const std::string& passphrase) :
direction(DECRYPTION),
block_cipher(nullptr),
m_prf(nullptr)
{
AlgorithmIdentifier kdf_algo, enc_algo;
BER_Decoder(params)
.start_cons(SEQUENCE)
.decode(kdf_algo)
.decode(enc_algo)
.verify_end()
.end_cons();
AlgorithmIdentifier prf_algo;
if(kdf_algo.oid != OIDS::lookup("PKCS5.PBKDF2"))
throw Decoding_Error("PBE-PKCS5 v2.0: Unknown KDF algorithm " +
kdf_algo.oid.as_string());
BER_Decoder(kdf_algo.parameters)
.start_cons(SEQUENCE)
.decode(salt, OCTET_STRING)
.decode(iterations)
.decode_optional(key_length, INTEGER, UNIVERSAL)
.decode_optional(prf_algo, SEQUENCE, CONSTRUCTED,
AlgorithmIdentifier("HMAC(SHA-160)",
AlgorithmIdentifier::USE_NULL_PARAM))
.verify_end()
.end_cons();
Algorithm_Factory& af = global_state().algorithm_factory();
std::string cipher = OIDS::lookup(enc_algo.oid);
std::vector<std::string> cipher_spec = split_on(cipher, '/');
if(cipher_spec.size() != 2)
throw Decoding_Error("PBE-PKCS5 v2.0: Invalid cipher spec " + cipher);
if(cipher_spec[1] != "CBC")
throw Decoding_Error("PBE-PKCS5 v2.0: Don't know param format for " +
cipher);
BER_Decoder(enc_algo.parameters).decode(iv, OCTET_STRING).verify_end();
block_cipher = af.make_block_cipher(cipher_spec[0]);
m_prf = af.make_mac(OIDS::lookup(prf_algo.oid));
if(key_length == 0)
key_length = block_cipher->maximum_keylength();
if(salt.size() < 8)
throw Decoding_Error("PBE-PKCS5 v2.0: Encoded salt is too small");
PKCS5_PBKDF2 pbkdf(m_prf->clone());
key = pbkdf.derive_key(key_length, passphrase,
&salt[0], salt.size(),
iterations).bits_of();
}
PBE_PKCS5v20::~PBE_PKCS5v20()
{
delete m_prf;
delete block_cipher;
}
}
|