1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
/*
* OCB Mode
* (C) 2013,2017 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/ocb.h>
#include <botan/block_cipher.h>
#include <botan/internal/poly_dbl.h>
#include <botan/internal/bit_ops.h>
namespace Botan {
// Has to be in Botan namespace so unique_ptr can reference it
class L_computer final
{
public:
explicit L_computer(const BlockCipher& cipher)
{
m_L_star.resize(cipher.block_size());
cipher.encrypt(m_L_star);
m_L_dollar = poly_double(star());
m_L.push_back(poly_double(dollar()));
}
const secure_vector<uint8_t>& star() const { return m_L_star; }
const secure_vector<uint8_t>& dollar() const { return m_L_dollar; }
const secure_vector<uint8_t>& operator()(size_t i) const { return get(i); }
const secure_vector<uint8_t>&
compute_offsets(secure_vector<uint8_t>& offset,
size_t block_index,
size_t blocks,
size_t BS) const
{
m_offset_buf.resize(blocks * BS);
for(size_t i = 0; i != blocks; ++i)
{ // could be done in parallel
offset ^= get(ctz(block_index + 1 + i));
copy_mem(&m_offset_buf[BS*i], offset.data(), BS);
}
return m_offset_buf;
}
private:
const secure_vector<uint8_t>& get(size_t i) const
{
while(m_L.size() <= i)
m_L.push_back(poly_double(m_L.back()));
return m_L.at(i);
}
secure_vector<uint8_t> poly_double(const secure_vector<uint8_t>& in) const
{
secure_vector<uint8_t> out(in.size());
poly_double_n(out.data(), in.data(), out.size());
return out;
}
secure_vector<uint8_t> m_L_dollar, m_L_star;
mutable std::vector<secure_vector<uint8_t>> m_L;
mutable secure_vector<uint8_t> m_offset_buf;
};
namespace {
/*
* OCB's HASH
*/
secure_vector<uint8_t> ocb_hash(const L_computer& L,
const BlockCipher& cipher,
const uint8_t ad[], size_t ad_len)
{
const size_t BS = cipher.block_size();
secure_vector<uint8_t> sum(BS);
secure_vector<uint8_t> offset(BS);
secure_vector<uint8_t> buf(BS);
const size_t ad_blocks = (ad_len / BS);
const size_t ad_remainder = (ad_len % BS);
for(size_t i = 0; i != ad_blocks; ++i)
{
// this loop could run in parallel
offset ^= L(ctz(i+1));
buf = offset;
xor_buf(buf.data(), &ad[BS*i], BS);
cipher.encrypt(buf);
sum ^= buf;
}
if(ad_remainder)
{
offset ^= L.star();
buf = offset;
xor_buf(buf.data(), &ad[BS*ad_blocks], ad_remainder);
buf[ad_len % BS] ^= 0x80;
cipher.encrypt(buf);
sum ^= buf;
}
return sum;
}
}
OCB_Mode::OCB_Mode(BlockCipher* cipher, size_t tag_size) :
m_cipher(cipher),
m_checksum(m_cipher->parallel_bytes()),
m_offset(m_cipher->block_size()),
m_ad_hash(m_cipher->block_size()),
m_tag_size(tag_size)
{
const size_t BS = m_cipher->block_size();
/*
* draft-krovetz-ocb-wide-d1 specifies OCB for several other block
* sizes but only 128, 192, 256 and 512 bit are currently supported
* by this implementation.
*/
if(BS != 16 && BS != 24 && BS != 32 && BS != 64)
throw Invalid_Argument("OCB does not support cipher " + m_cipher->name());
if(m_tag_size % 4 != 0 || m_tag_size < 8 || m_tag_size > BS || m_tag_size > 32)
throw Invalid_Argument("Invalid OCB tag length");
}
OCB_Mode::~OCB_Mode() { /* for unique_ptr destructor */ }
void OCB_Mode::clear()
{
m_cipher->clear();
m_L.reset(); // add clear here?
reset();
}
void OCB_Mode::reset()
{
m_block_index = 0;
zeroise(m_ad_hash);
zeroise(m_offset);
zeroise(m_checksum);
m_last_nonce.clear();
m_stretch.clear();
}
bool OCB_Mode::valid_nonce_length(size_t length) const
{
if(length == 0)
return false;
if(m_cipher->block_size() == 16)
return length < 16;
else
return length < (m_cipher->block_size() - 1);
}
std::string OCB_Mode::name() const
{
return m_cipher->name() + "/OCB"; // include tag size?
}
size_t OCB_Mode::update_granularity() const
{
return m_cipher->parallel_bytes();
}
Key_Length_Specification OCB_Mode::key_spec() const
{
return m_cipher->key_spec();
}
void OCB_Mode::key_schedule(const uint8_t key[], size_t length)
{
m_cipher->set_key(key, length);
m_L.reset(new L_computer(*m_cipher));
}
void OCB_Mode::set_associated_data(const uint8_t ad[], size_t ad_len)
{
BOTAN_ASSERT(m_L, "A key was set");
m_ad_hash = ocb_hash(*m_L, *m_cipher, ad, ad_len);
}
secure_vector<uint8_t>
OCB_Mode::update_nonce(const uint8_t nonce[], size_t nonce_len)
{
const size_t BS = m_cipher->block_size();
BOTAN_ASSERT(BS == 16 || BS == 24 || BS == 32 || BS == 64,
"OCB block size is supported");
const size_t MASKLEN = (BS == 16 ? 6 : ((BS == 24) ? 7 : 8));
const uint8_t BOTTOM_MASK =
static_cast<uint8_t>((static_cast<uint16_t>(1) << MASKLEN) - 1);
secure_vector<uint8_t> nonce_buf(BS);
copy_mem(&nonce_buf[BS - nonce_len], nonce, nonce_len);
nonce_buf[0] = ((tag_size()*8) % (BS*8)) << (BS <= 16 ? 1 : 0);
nonce_buf[BS - nonce_len - 1] ^= 1;
const uint8_t bottom = nonce_buf[BS-1] & BOTTOM_MASK;
nonce_buf[BS-1] &= ~BOTTOM_MASK;
const bool need_new_stretch = (m_last_nonce != nonce_buf);
if(need_new_stretch)
{
m_last_nonce = nonce_buf;
m_cipher->encrypt(nonce_buf);
/*
The loop bounds (BS vs BS/2) are derived from the relation
between the block size and the MASKLEN. Using the terminology
of draft-krovetz-ocb-wide, we have to derive enough bits in
ShiftedKtop to read up to BLOCKLEN+bottom bits from Stretch.
+----------+---------+-------+---------+
| BLOCKLEN | RESIDUE | SHIFT | MASKLEN |
+----------+---------+-------+---------+
| 32 | 141 | 17 | 4 |
| 64 | 27 | 25 | 5 |
| 96 | 1601 | 33 | 6 |
| 128 | 135 | 8 | 6 |
| 192 | 135 | 40 | 7 |
| 256 | 1061 | 1 | 8 |
| 384 | 4109 | 80 | 8 |
| 512 | 293 | 176 | 8 |
| 1024 | 524355 | 352 | 9 |
+----------+---------+-------+---------+
*/
if(BS == 16)
{
for(size_t i = 0; i != BS / 2; ++i)
nonce_buf.push_back(nonce_buf[i] ^ nonce_buf[i+1]);
}
else if(BS == 24)
{
for(size_t i = 0; i != 16; ++i)
nonce_buf.push_back(nonce_buf[i] ^ nonce_buf[i+5]);
}
else if(BS == 32)
{
for(size_t i = 0; i != BS; ++i)
nonce_buf.push_back(nonce_buf[i] ^ (nonce_buf[i] << 1) ^ (nonce_buf[i+1] >> 7));
}
else if(BS == 64)
{
for(size_t i = 0; i != BS / 2; ++i)
nonce_buf.push_back(nonce_buf[i] ^ nonce_buf[i+22]);
}
m_stretch = nonce_buf;
}
// now set the offset from stretch and bottom
const size_t shift_bytes = bottom / 8;
const size_t shift_bits = bottom % 8;
BOTAN_ASSERT(m_stretch.size() >= BS + shift_bytes + 1, "Size ok");
secure_vector<uint8_t> offset(BS);
for(size_t i = 0; i != BS; ++i)
{
offset[i] = (m_stretch[i+shift_bytes] << shift_bits);
offset[i] |= (m_stretch[i+shift_bytes+1] >> (8-shift_bits));
}
return offset;
}
void OCB_Mode::start_msg(const uint8_t nonce[], size_t nonce_len)
{
if(!valid_nonce_length(nonce_len))
throw Invalid_IV_Length(name(), nonce_len);
BOTAN_ASSERT(m_L, "A key was set");
m_offset = update_nonce(nonce, nonce_len);
zeroise(m_checksum);
m_block_index = 0;
}
void OCB_Encryption::encrypt(uint8_t buffer[], size_t blocks)
{
const size_t BS = m_cipher->block_size();
const size_t par_blocks = m_checksum.size() / BS;
while(blocks)
{
const size_t proc_blocks = std::min(blocks, par_blocks);
const size_t proc_bytes = proc_blocks * BS;
BOTAN_ASSERT(m_L, "A key was set");
const auto& offsets = m_L->compute_offsets(m_offset, m_block_index, proc_blocks, BS);
xor_buf(m_checksum.data(), buffer, proc_bytes);
xor_buf(buffer, offsets.data(), proc_bytes);
m_cipher->encrypt_n(buffer, buffer, proc_blocks);
xor_buf(buffer, offsets.data(), proc_bytes);
buffer += proc_bytes;
blocks -= proc_blocks;
m_block_index += proc_blocks;
}
}
size_t OCB_Encryption::process(uint8_t buf[], size_t sz)
{
const size_t BS = m_cipher->block_size();
BOTAN_ASSERT(sz % BS == 0, "Invalid OCB input size");
encrypt(buf, sz / BS);
return sz;
}
void OCB_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
{
const size_t BS = m_cipher->block_size();
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
uint8_t* buf = buffer.data() + offset;
if(sz)
{
const size_t final_full_blocks = sz / BS;
const size_t remainder_bytes = sz - (final_full_blocks * BS);
encrypt(buf, final_full_blocks);
if(remainder_bytes)
{
BOTAN_ASSERT(remainder_bytes < BS, "Only a partial block left");
uint8_t* remainder = &buf[sz - remainder_bytes];
xor_buf(m_checksum.data(), remainder, remainder_bytes);
m_checksum[remainder_bytes] ^= 0x80;
m_offset ^= m_L->star(); // Offset_*
secure_vector<uint8_t> zeros(BS);
m_cipher->encrypt(m_offset, zeros);
xor_buf(remainder, zeros.data(), remainder_bytes);
}
}
secure_vector<uint8_t> checksum(BS);
// fold checksum
for(size_t i = 0; i != m_checksum.size(); ++i)
checksum[i % checksum.size()] ^= m_checksum[i];
// now compute the tag
secure_vector<uint8_t> mac = m_offset;
mac ^= checksum;
mac ^= m_L->dollar();
m_cipher->encrypt(mac);
mac ^= m_ad_hash;
buffer += std::make_pair(mac.data(), tag_size());
zeroise(m_checksum);
zeroise(m_offset);
m_block_index = 0;
}
void OCB_Decryption::decrypt(uint8_t buffer[], size_t blocks)
{
const size_t BS = m_cipher->block_size();
const size_t par_bytes = m_cipher->parallel_bytes();
BOTAN_ASSERT(par_bytes % BS == 0, "Cipher is parallel in full blocks");
const size_t par_blocks = par_bytes / BS;
while(blocks)
{
const size_t proc_blocks = std::min(blocks, par_blocks);
const size_t proc_bytes = proc_blocks * BS;
const auto& offsets = m_L->compute_offsets(m_offset, m_block_index, proc_blocks, BS);
xor_buf(buffer, offsets.data(), proc_bytes);
m_cipher->decrypt_n(buffer, buffer, proc_blocks);
xor_buf(buffer, offsets.data(), proc_bytes);
xor_buf(m_checksum.data(), buffer, proc_bytes);
buffer += proc_bytes;
blocks -= proc_blocks;
m_block_index += proc_blocks;
}
}
size_t OCB_Decryption::process(uint8_t buf[], size_t sz)
{
const size_t BS = m_cipher->block_size();
BOTAN_ASSERT(sz % BS == 0, "Invalid OCB input size");
decrypt(buf, sz / BS);
return sz;
}
void OCB_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
{
const size_t BS = m_cipher->block_size();
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
uint8_t* buf = buffer.data() + offset;
BOTAN_ASSERT(sz >= tag_size(), "We have the tag");
const size_t remaining = sz - tag_size();
if(remaining)
{
const size_t final_full_blocks = remaining / BS;
const size_t final_bytes = remaining - (final_full_blocks * BS);
decrypt(buf, final_full_blocks);
if(final_bytes)
{
BOTAN_ASSERT(final_bytes < BS, "Only a partial block left");
uint8_t* remainder = &buf[remaining - final_bytes];
m_offset ^= m_L->star(); // Offset_*
secure_vector<uint8_t> pad(BS);
m_cipher->encrypt(m_offset, pad); // P_*
xor_buf(remainder, pad.data(), final_bytes);
xor_buf(m_checksum.data(), remainder, final_bytes);
m_checksum[final_bytes] ^= 0x80;
}
}
secure_vector<uint8_t> checksum(BS);
// fold checksum
for(size_t i = 0; i != m_checksum.size(); ++i)
checksum[i % checksum.size()] ^= m_checksum[i];
// compute the mac
secure_vector<uint8_t> mac = m_offset;
mac ^= checksum;
mac ^= m_L->dollar();
m_cipher->encrypt(mac);
mac ^= m_ad_hash;
// reset state
zeroise(m_checksum);
zeroise(m_offset);
m_block_index = 0;
// compare mac
const uint8_t* included_tag = &buf[remaining];
if(!constant_time_compare(mac.data(), included_tag, tag_size()))
throw Integrity_Failure("OCB tag check failed");
// remove tag from end of message
buffer.resize(remaining + offset);
}
}
|