1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/*
* GCM Mode Encryption
* (C) 2013,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/gcm.h>
#include <botan/internal/mode_utils.h>
#include <botan/internal/ct_utils.h>
#include <botan/ctr.h>
#if defined(BOTAN_HAS_GCM_CLMUL)
#include <botan/internal/clmul.h>
#include <botan/cpuid.h>
#endif
namespace Botan {
void GHASH::gcm_multiply(secure_vector<byte>& x) const
{
#if defined(BOTAN_HAS_GCM_CLMUL)
if(CPUID::has_clmul())
return gcm_multiply_clmul(x.data(), m_H.data());
#endif
static const u64bit R = 0xE100000000000000;
u64bit H[2] = {
load_be<u64bit>(m_H.data(), 0),
load_be<u64bit>(m_H.data(), 1)
};
u64bit Z[2] = { 0, 0 };
CT::poison(H, 2);
CT::poison(Z, 2);
CT::poison(x.data(), x.size());
// SSE2 might be useful here
for(size_t i = 0; i != 2; ++i)
{
const u64bit X = load_be<u64bit>(x.data(), i);
u64bit mask = 0x8000000000000000;
for(size_t j = 0; j != 64; ++j)
{
const u64bit XMASK = CT::expand_mask<u64bit>(X & mask);
mask >>= 1;
Z[0] ^= H[0] & XMASK;
Z[1] ^= H[1] & XMASK;
// GCM's bit ops are reversed so we carry out of the bottom
const u64bit carry = R & CT::expand_mask<u64bit>(H[1] & 1);
H[1] = (H[1] >> 1) | (H[0] << 63);
H[0] = (H[0] >> 1) ^ carry;
}
}
store_be<u64bit>(x.data(), Z[0], Z[1]);
CT::unpoison(x.data(), x.size());
}
void GHASH::ghash_update(secure_vector<byte>& ghash,
const byte input[], size_t length)
{
const size_t BS = 16;
/*
This assumes if less than block size input then we're just on the
final block and should pad with zeros
*/
while(length)
{
const size_t to_proc = std::min(length, BS);
xor_buf(ghash.data(), input, to_proc);
gcm_multiply(ghash);
input += to_proc;
length -= to_proc;
}
}
void GHASH::key_schedule(const byte key[], size_t length)
{
m_H.assign(key, key+length);
m_H_ad.resize(16);
m_ad_len = 0;
m_text_len = 0;
}
void GHASH::start(const byte nonce[], size_t len)
{
m_nonce.assign(nonce, nonce + len);
m_ghash = m_H_ad;
}
void GHASH::set_associated_data(const byte input[], size_t length)
{
zeroise(m_H_ad);
ghash_update(m_H_ad, input, length);
m_ad_len = length;
}
void GHASH::update(const byte input[], size_t length)
{
BOTAN_ASSERT(m_ghash.size() == 16, "Key was set");
m_text_len += length;
ghash_update(m_ghash, input, length);
}
void GHASH::add_final_block(secure_vector<byte>& hash,
size_t ad_len, size_t text_len)
{
secure_vector<byte> final_block(16);
store_be<u64bit>(final_block.data(), 8*ad_len, 8*text_len);
ghash_update(hash, final_block.data(), final_block.size());
}
secure_vector<byte> GHASH::final()
{
add_final_block(m_ghash, m_ad_len, m_text_len);
secure_vector<byte> mac;
mac.swap(m_ghash);
mac ^= m_nonce;
m_text_len = 0;
return mac;
}
secure_vector<byte> GHASH::nonce_hash(const byte nonce[], size_t nonce_len)
{
BOTAN_ASSERT(m_ghash.size() == 0, "nonce_hash called during wrong time");
secure_vector<byte> y0(16);
ghash_update(y0, nonce, nonce_len);
add_final_block(y0, 0, nonce_len);
return y0;
}
void GHASH::clear()
{
zeroise(m_H);
zeroise(m_H_ad);
m_ghash.clear();
m_text_len = m_ad_len = 0;
}
/*
* GCM_Mode Constructor
*/
GCM_Mode::GCM_Mode(BlockCipher* cipher, size_t tag_size) :
m_tag_size(tag_size),
m_cipher_name(cipher->name())
{
if(cipher->block_size() != m_BS)
throw Invalid_Argument("GCM requires a 128 bit cipher so cannot be used with " +
cipher->name());
m_ghash.reset(new GHASH);
m_ctr.reset(new CTR_BE(cipher, 4)); // CTR_BE takes ownership of cipher
if(m_tag_size != 8 && m_tag_size != 16)
throw Invalid_Argument(name() + ": Bad tag size " + std::to_string(m_tag_size));
}
void GCM_Mode::clear()
{
m_ctr->clear();
m_ghash->clear();
}
std::string GCM_Mode::name() const
{
return (m_cipher_name + "/GCM");
}
const char* GCM_Mode::provider() const
{
#if defined(BOTAN_HAS_GCM_CLMUL)
if(CPUID::has_clmul())
return "clmul";
#endif
return "base";
}
size_t GCM_Mode::update_granularity() const
{
return m_BS;
}
Key_Length_Specification GCM_Mode::key_spec() const
{
return m_ctr->key_spec();
}
void GCM_Mode::key_schedule(const byte key[], size_t keylen)
{
m_ctr->set_key(key, keylen);
const std::vector<byte> zeros(m_BS);
m_ctr->set_iv(zeros.data(), zeros.size());
secure_vector<byte> H(m_BS);
m_ctr->encipher(H);
m_ghash->set_key(H);
}
void GCM_Mode::set_associated_data(const byte ad[], size_t ad_len)
{
m_ghash->set_associated_data(ad, ad_len);
}
secure_vector<byte> GCM_Mode::start_raw(const byte nonce[], size_t nonce_len)
{
if(!valid_nonce_length(nonce_len))
throw Invalid_IV_Length(name(), nonce_len);
secure_vector<byte> y0(m_BS);
if(nonce_len == 12)
{
copy_mem(y0.data(), nonce, nonce_len);
y0[15] = 1;
}
else
{
y0 = m_ghash->nonce_hash(nonce, nonce_len);
}
m_ctr->set_iv(y0.data(), y0.size());
secure_vector<byte> m_enc_y0(m_BS);
m_ctr->encipher(m_enc_y0);
m_ghash->start(m_enc_y0.data(), m_enc_y0.size());
return secure_vector<byte>();
}
void GCM_Encryption::update(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = buffer.data() + offset;
m_ctr->cipher(buf, buf, sz);
m_ghash->update(buf, sz);
}
void GCM_Encryption::finish(secure_vector<byte>& buffer, size_t offset)
{
update(buffer, offset);
auto mac = m_ghash->final();
buffer += std::make_pair(mac.data(), tag_size());
}
void GCM_Decryption::update(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = buffer.data() + offset;
m_ghash->update(buf, sz);
m_ctr->cipher(buf, buf, sz);
}
void GCM_Decryption::finish(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = buffer.data() + offset;
BOTAN_ASSERT(sz >= tag_size(), "Have the tag as part of final input");
const size_t remaining = sz - tag_size();
// handle any final input before the tag
if(remaining)
{
m_ghash->update(buf, remaining);
m_ctr->cipher(buf, buf, remaining);
}
auto mac = m_ghash->final();
const byte* included_tag = &buffer[remaining];
if(!same_mem(mac.data(), included_tag, tag_size()))
throw Integrity_Failure("GCM tag check failed");
buffer.resize(offset + remaining);
}
}
|