1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
/*
* CCM Mode Encryption
* (C) 2013 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/ccm.h>
#include <botan/parsing.h>
namespace Botan {
// 128-bit cipher is intrinsic to CCM definition
static const size_t CCM_BS = 16;
/*
* CCM_Mode Constructor
*/
CCM_Mode::CCM_Mode(BlockCipher* cipher, size_t tag_size, size_t L) :
m_tag_size(tag_size),
m_L(L),
m_cipher(cipher)
{
if(m_cipher->block_size() != CCM_BS)
throw Invalid_Argument(m_cipher->name() + " cannot be used with CCM mode");
if(L < 2 || L > 8)
throw Invalid_Argument("Invalid CCM L value " + std::to_string(L));
if(tag_size < 4 || tag_size > 16 || tag_size % 2 != 0)
throw Invalid_Argument("invalid CCM tag length " + std::to_string(tag_size));
}
void CCM_Mode::clear()
{
m_cipher->clear();
reset();
}
void CCM_Mode::reset()
{
m_nonce.clear();
m_msg_buf.clear();
m_ad_buf.clear();
}
std::string CCM_Mode::name() const
{
return (m_cipher->name() + "/CCM(" + std::to_string(tag_size()) + "," + std::to_string(L())) + ")";
}
bool CCM_Mode::valid_nonce_length(size_t n) const
{
return (n == (15-L()));
}
size_t CCM_Mode::default_nonce_length() const
{
return (15-L());
}
size_t CCM_Mode::update_granularity() const
{
/*
This value does not particularly matter as regardless CCM_Mode::update
buffers all input, so in theory this could be 1. However as for instance
Transform_Filter creates update_granularity() uint8_t buffers, use a
somewhat large size to avoid bouncing on a tiny buffer.
*/
return m_cipher->parallel_bytes();
}
Key_Length_Specification CCM_Mode::key_spec() const
{
return m_cipher->key_spec();
}
void CCM_Mode::key_schedule(const uint8_t key[], size_t length)
{
m_cipher->set_key(key, length);
}
void CCM_Mode::set_associated_data(const uint8_t ad[], size_t length)
{
m_ad_buf.clear();
if(length)
{
// FIXME: support larger AD using length encoding rules
BOTAN_ASSERT(length < (0xFFFF - 0xFF), "Supported CCM AD length");
m_ad_buf.push_back(get_byte(0, static_cast<uint16_t>(length)));
m_ad_buf.push_back(get_byte(1, static_cast<uint16_t>(length)));
m_ad_buf += std::make_pair(ad, length);
while(m_ad_buf.size() % CCM_BS)
m_ad_buf.push_back(0); // pad with zeros to full block size
}
}
void CCM_Mode::start_msg(const uint8_t nonce[], size_t nonce_len)
{
if(!valid_nonce_length(nonce_len))
throw Invalid_IV_Length(name(), nonce_len);
m_nonce.assign(nonce, nonce + nonce_len);
m_msg_buf.clear();
}
size_t CCM_Mode::process(uint8_t buf[], size_t sz)
{
m_msg_buf.insert(m_msg_buf.end(), buf, buf + sz);
return 0; // no output until finished
}
void CCM_Mode::encode_length(size_t len, uint8_t out[])
{
const size_t len_bytes = L();
BOTAN_ASSERT(len_bytes < sizeof(size_t), "Length field fits");
for(size_t i = 0; i != len_bytes; ++i)
out[len_bytes-1-i] = get_byte(sizeof(size_t)-1-i, len);
BOTAN_ASSERT((len >> (len_bytes*8)) == 0, "Message length fits in field");
}
void CCM_Mode::inc(secure_vector<uint8_t>& C)
{
for(size_t i = 0; i != C.size(); ++i)
if(++C[C.size()-i-1])
break;
}
secure_vector<uint8_t> CCM_Mode::format_b0(size_t sz)
{
secure_vector<uint8_t> B0(CCM_BS);
const uint8_t b_flags = (m_ad_buf.size() ? 64 : 0) + (((tag_size()/2)-1) << 3) + (L()-1);
B0[0] = b_flags;
copy_mem(&B0[1], m_nonce.data(), m_nonce.size());
encode_length(sz, &B0[m_nonce.size()+1]);
return B0;
}
secure_vector<uint8_t> CCM_Mode::format_c0()
{
secure_vector<uint8_t> C(CCM_BS);
const uint8_t a_flags = L()-1;
C[0] = a_flags;
copy_mem(&C[1], m_nonce.data(), m_nonce.size());
return C;
}
void CCM_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
buffer.insert(buffer.begin() + offset, msg_buf().begin(), msg_buf().end());
const size_t sz = buffer.size() - offset;
uint8_t* buf = buffer.data() + offset;
const secure_vector<uint8_t>& ad = ad_buf();
BOTAN_ASSERT(ad.size() % CCM_BS == 0, "AD is block size multiple");
const BlockCipher& E = cipher();
secure_vector<uint8_t> T(CCM_BS);
E.encrypt(format_b0(sz), T);
for(size_t i = 0; i != ad.size(); i += CCM_BS)
{
xor_buf(T.data(), &ad[i], CCM_BS);
E.encrypt(T);
}
secure_vector<uint8_t> C = format_c0();
secure_vector<uint8_t> S0(CCM_BS);
E.encrypt(C, S0);
inc(C);
secure_vector<uint8_t> X(CCM_BS);
const uint8_t* buf_end = &buf[sz];
while(buf != buf_end)
{
const size_t to_proc = std::min<size_t>(CCM_BS, buf_end - buf);
xor_buf(T.data(), buf, to_proc);
E.encrypt(T);
E.encrypt(C, X);
xor_buf(buf, X.data(), to_proc);
inc(C);
buf += to_proc;
}
T ^= S0;
buffer += std::make_pair(T.data(), tag_size());
}
void CCM_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
buffer.insert(buffer.begin() + offset, msg_buf().begin(), msg_buf().end());
const size_t sz = buffer.size() - offset;
uint8_t* buf = buffer.data() + offset;
BOTAN_ASSERT(sz >= tag_size(), "We have the tag");
const secure_vector<uint8_t>& ad = ad_buf();
BOTAN_ASSERT(ad.size() % CCM_BS == 0, "AD is block size multiple");
const BlockCipher& E = cipher();
secure_vector<uint8_t> T(CCM_BS);
E.encrypt(format_b0(sz - tag_size()), T);
for(size_t i = 0; i != ad.size(); i += CCM_BS)
{
xor_buf(T.data(), &ad[i], CCM_BS);
E.encrypt(T);
}
secure_vector<uint8_t> C = format_c0();
secure_vector<uint8_t> S0(CCM_BS);
E.encrypt(C, S0);
inc(C);
secure_vector<uint8_t> X(CCM_BS);
const uint8_t* buf_end = &buf[sz - tag_size()];
while(buf != buf_end)
{
const size_t to_proc = std::min<size_t>(CCM_BS, buf_end - buf);
E.encrypt(C, X);
xor_buf(buf, X.data(), to_proc);
inc(C);
xor_buf(T.data(), buf, to_proc);
E.encrypt(T);
buf += to_proc;
}
T ^= S0;
if(!same_mem(T.data(), buf_end, tag_size()))
throw Integrity_Failure("CCM tag check failed");
buffer.resize(buffer.size() - tag_size());
}
}
|