1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/*
* RTSS (threshold secret sharing)
* (C) 2009,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/tss.h>
#include <botan/rng.h>
#include <botan/hash.h>
#include <botan/internal/loadstor.h>
#include <botan/hex.h>
namespace Botan {
namespace {
const size_t RTSS_HEADER_SIZE = 20;
/**
Table for GF(2^8) arithmetic (exponentials)
*/
const uint8_t RTSS_EXP[256] = {
0x01, 0x03, 0x05, 0x0F, 0x11, 0x33, 0x55, 0xFF, 0x1A, 0x2E, 0x72,
0x96, 0xA1, 0xF8, 0x13, 0x35, 0x5F, 0xE1, 0x38, 0x48, 0xD8, 0x73,
0x95, 0xA4, 0xF7, 0x02, 0x06, 0x0A, 0x1E, 0x22, 0x66, 0xAA, 0xE5,
0x34, 0x5C, 0xE4, 0x37, 0x59, 0xEB, 0x26, 0x6A, 0xBE, 0xD9, 0x70,
0x90, 0xAB, 0xE6, 0x31, 0x53, 0xF5, 0x04, 0x0C, 0x14, 0x3C, 0x44,
0xCC, 0x4F, 0xD1, 0x68, 0xB8, 0xD3, 0x6E, 0xB2, 0xCD, 0x4C, 0xD4,
0x67, 0xA9, 0xE0, 0x3B, 0x4D, 0xD7, 0x62, 0xA6, 0xF1, 0x08, 0x18,
0x28, 0x78, 0x88, 0x83, 0x9E, 0xB9, 0xD0, 0x6B, 0xBD, 0xDC, 0x7F,
0x81, 0x98, 0xB3, 0xCE, 0x49, 0xDB, 0x76, 0x9A, 0xB5, 0xC4, 0x57,
0xF9, 0x10, 0x30, 0x50, 0xF0, 0x0B, 0x1D, 0x27, 0x69, 0xBB, 0xD6,
0x61, 0xA3, 0xFE, 0x19, 0x2B, 0x7D, 0x87, 0x92, 0xAD, 0xEC, 0x2F,
0x71, 0x93, 0xAE, 0xE9, 0x20, 0x60, 0xA0, 0xFB, 0x16, 0x3A, 0x4E,
0xD2, 0x6D, 0xB7, 0xC2, 0x5D, 0xE7, 0x32, 0x56, 0xFA, 0x15, 0x3F,
0x41, 0xC3, 0x5E, 0xE2, 0x3D, 0x47, 0xC9, 0x40, 0xC0, 0x5B, 0xED,
0x2C, 0x74, 0x9C, 0xBF, 0xDA, 0x75, 0x9F, 0xBA, 0xD5, 0x64, 0xAC,
0xEF, 0x2A, 0x7E, 0x82, 0x9D, 0xBC, 0xDF, 0x7A, 0x8E, 0x89, 0x80,
0x9B, 0xB6, 0xC1, 0x58, 0xE8, 0x23, 0x65, 0xAF, 0xEA, 0x25, 0x6F,
0xB1, 0xC8, 0x43, 0xC5, 0x54, 0xFC, 0x1F, 0x21, 0x63, 0xA5, 0xF4,
0x07, 0x09, 0x1B, 0x2D, 0x77, 0x99, 0xB0, 0xCB, 0x46, 0xCA, 0x45,
0xCF, 0x4A, 0xDE, 0x79, 0x8B, 0x86, 0x91, 0xA8, 0xE3, 0x3E, 0x42,
0xC6, 0x51, 0xF3, 0x0E, 0x12, 0x36, 0x5A, 0xEE, 0x29, 0x7B, 0x8D,
0x8C, 0x8F, 0x8A, 0x85, 0x94, 0xA7, 0xF2, 0x0D, 0x17, 0x39, 0x4B,
0xDD, 0x7C, 0x84, 0x97, 0xA2, 0xFD, 0x1C, 0x24, 0x6C, 0xB4, 0xC7,
0x52, 0xF6, 0x01 };
/**
Table for GF(2^8) arithmetic (logarithms)
*/
const uint8_t RTSS_LOG[] = {
0x90, 0x00, 0x19, 0x01, 0x32, 0x02, 0x1A, 0xC6, 0x4B, 0xC7, 0x1B,
0x68, 0x33, 0xEE, 0xDF, 0x03, 0x64, 0x04, 0xE0, 0x0E, 0x34, 0x8D,
0x81, 0xEF, 0x4C, 0x71, 0x08, 0xC8, 0xF8, 0x69, 0x1C, 0xC1, 0x7D,
0xC2, 0x1D, 0xB5, 0xF9, 0xB9, 0x27, 0x6A, 0x4D, 0xE4, 0xA6, 0x72,
0x9A, 0xC9, 0x09, 0x78, 0x65, 0x2F, 0x8A, 0x05, 0x21, 0x0F, 0xE1,
0x24, 0x12, 0xF0, 0x82, 0x45, 0x35, 0x93, 0xDA, 0x8E, 0x96, 0x8F,
0xDB, 0xBD, 0x36, 0xD0, 0xCE, 0x94, 0x13, 0x5C, 0xD2, 0xF1, 0x40,
0x46, 0x83, 0x38, 0x66, 0xDD, 0xFD, 0x30, 0xBF, 0x06, 0x8B, 0x62,
0xB3, 0x25, 0xE2, 0x98, 0x22, 0x88, 0x91, 0x10, 0x7E, 0x6E, 0x48,
0xC3, 0xA3, 0xB6, 0x1E, 0x42, 0x3A, 0x6B, 0x28, 0x54, 0xFA, 0x85,
0x3D, 0xBA, 0x2B, 0x79, 0x0A, 0x15, 0x9B, 0x9F, 0x5E, 0xCA, 0x4E,
0xD4, 0xAC, 0xE5, 0xF3, 0x73, 0xA7, 0x57, 0xAF, 0x58, 0xA8, 0x50,
0xF4, 0xEA, 0xD6, 0x74, 0x4F, 0xAE, 0xE9, 0xD5, 0xE7, 0xE6, 0xAD,
0xE8, 0x2C, 0xD7, 0x75, 0x7A, 0xEB, 0x16, 0x0B, 0xF5, 0x59, 0xCB,
0x5F, 0xB0, 0x9C, 0xA9, 0x51, 0xA0, 0x7F, 0x0C, 0xF6, 0x6F, 0x17,
0xC4, 0x49, 0xEC, 0xD8, 0x43, 0x1F, 0x2D, 0xA4, 0x76, 0x7B, 0xB7,
0xCC, 0xBB, 0x3E, 0x5A, 0xFB, 0x60, 0xB1, 0x86, 0x3B, 0x52, 0xA1,
0x6C, 0xAA, 0x55, 0x29, 0x9D, 0x97, 0xB2, 0x87, 0x90, 0x61, 0xBE,
0xDC, 0xFC, 0xBC, 0x95, 0xCF, 0xCD, 0x37, 0x3F, 0x5B, 0xD1, 0x53,
0x39, 0x84, 0x3C, 0x41, 0xA2, 0x6D, 0x47, 0x14, 0x2A, 0x9E, 0x5D,
0x56, 0xF2, 0xD3, 0xAB, 0x44, 0x11, 0x92, 0xD9, 0x23, 0x20, 0x2E,
0x89, 0xB4, 0x7C, 0xB8, 0x26, 0x77, 0x99, 0xE3, 0xA5, 0x67, 0x4A,
0xED, 0xDE, 0xC5, 0x31, 0xFE, 0x18, 0x0D, 0x63, 0x8C, 0x80, 0xC0,
0xF7, 0x70, 0x07 };
uint8_t gfp_mul(uint8_t x, uint8_t y)
{
if(x == 0 || y == 0)
return 0;
return RTSS_EXP[(RTSS_LOG[x] + RTSS_LOG[y]) % 255];
}
uint8_t rtss_hash_id(const std::string& hash_name)
{
if(hash_name == "None")
return 0;
else if(hash_name == "SHA-160" || hash_name == "SHA-1" || hash_name == "SHA1")
return 1;
else if(hash_name == "SHA-256")
return 2;
else
throw Invalid_Argument("RTSS only supports SHA-1 and SHA-256");
}
std::unique_ptr<HashFunction> get_rtss_hash_by_id(uint8_t id)
{
if(id == 0)
return std::unique_ptr<HashFunction>();
if(id == 1)
return HashFunction::create_or_throw("SHA-1");
else if(id == 2)
return HashFunction::create_or_throw("SHA-256");
else
throw Decoding_Error("Unknown RTSS hash identifier");
}
}
RTSS_Share::RTSS_Share(const std::string& hex_input)
{
m_contents = hex_decode_locked(hex_input);
}
RTSS_Share::RTSS_Share(const uint8_t bin[], size_t len)
{
m_contents.assign(bin, bin + len);
}
uint8_t RTSS_Share::share_id() const
{
if(!initialized())
throw Invalid_State("RTSS_Share::share_id not initialized");
if(m_contents.size() < RTSS_HEADER_SIZE + 1)
throw Decoding_Error("RTSS_Share::share_id invalid share data");
return m_contents[20];
}
std::string RTSS_Share::to_string() const
{
return hex_encode(m_contents.data(), m_contents.size());
}
std::vector<RTSS_Share>
RTSS_Share::split(uint8_t M, uint8_t N,
const uint8_t S[], uint16_t S_len,
const uint8_t identifier[16],
RandomNumberGenerator& rng)
{
return RTSS_Share::split(M, N, S, S_len,
std::vector<uint8_t>(identifier, identifier + 16),
"SHA-256",
rng);
}
std::vector<RTSS_Share>
RTSS_Share::split(uint8_t M, uint8_t N,
const uint8_t S[], uint16_t S_len,
const std::vector<uint8_t>& identifier,
const std::string& hash_fn,
RandomNumberGenerator& rng)
{
if(M <= 1 || N <= 1 || M > N || N >= 255)
throw Invalid_Argument("RTSS_Share::split: Invalid N or M");
if(identifier.size() > 16)
throw Invalid_Argument("RTSS_Share::split Invalid identifier size");
const uint8_t hash_id = rtss_hash_id(hash_fn);
std::unique_ptr<HashFunction> hash;
if(hash_id > 0)
hash = HashFunction::create_or_throw(hash_fn);
// secret = S || H(S)
secure_vector<uint8_t> secret(S, S + S_len);
if(hash)
secret += hash->process(S, S_len);
if(secret.size() >= 0xFFFE)
throw Encoding_Error("RTSS_Share::split secret too large for TSS format");
// +1 byte for the share ID
const uint16_t share_len = static_cast<uint16_t>(secret.size() + 1);
secure_vector<uint8_t> share_header(RTSS_HEADER_SIZE);
copy_mem(&share_header[0], identifier.data(), identifier.size());
share_header[16] = hash_id;
share_header[17] = M;
share_header[18] = get_byte(0, share_len);
share_header[19] = get_byte(1, share_len);
// Create RTSS header in each share
std::vector<RTSS_Share> shares(N);
for(uint8_t i = 0; i != N; ++i)
{
shares[i].m_contents.reserve(share_header.size() + share_len);
shares[i].m_contents = share_header;
}
// Choose sequential values for X starting from 1
for(uint8_t i = 0; i != N; ++i)
shares[i].m_contents.push_back(i+1);
for(size_t i = 0; i != secret.size(); ++i)
{
std::vector<uint8_t> coefficients(M-1);
rng.randomize(coefficients.data(), coefficients.size());
for(uint8_t j = 0; j != N; ++j)
{
const uint8_t X = j + 1;
uint8_t sum = secret[i];
uint8_t X_i = X;
for(size_t k = 0; k != coefficients.size(); ++k)
{
sum ^= gfp_mul(X_i, coefficients[k]);
X_i = gfp_mul(X_i, X);
}
shares[j].m_contents.push_back(sum);
}
}
return shares;
}
secure_vector<uint8_t>
RTSS_Share::reconstruct(const std::vector<RTSS_Share>& shares)
{
if(shares.size() <= 1)
throw Decoding_Error("Insufficient shares to do TSS reconstruction");
for(size_t i = 0; i != shares.size(); ++i)
{
if(shares[i].size() < RTSS_HEADER_SIZE + 1)
throw Decoding_Error("Missing or malformed RTSS header");
if(shares[i].share_id() == 0)
throw Decoding_Error("Invalid (id = 0) RTSS share detected");
if(i > 0)
{
if(shares[i].size() != shares[0].size())
throw Decoding_Error("Different sized RTSS shares detected");
if(!same_mem(&shares[0].m_contents[0],
&shares[i].m_contents[0], RTSS_HEADER_SIZE))
throw Decoding_Error("Different RTSS headers detected");
}
}
const uint8_t N = shares[0].m_contents[17];
if(shares.size() < N)
throw Decoding_Error("Insufficient shares to do TSS reconstruction");
const uint16_t share_len = make_uint16(shares[0].m_contents[18],
shares[0].m_contents[19]);
const uint8_t hash_id = shares[0].m_contents[16];
std::unique_ptr<HashFunction> hash(get_rtss_hash_by_id(hash_id));
const size_t hash_len = (hash ? hash->output_length() : 0);
if(shares[0].size() != RTSS_HEADER_SIZE + share_len)
{
/*
* This second (laxer) check accomodates a bug in TSS that was
* fixed in 2.9.0 - previous versions used the length of the
* *secret* here, instead of the length of the *share*, which is
* precisely 1 + hash_len longer.
*/
if(shares[0].size() <= RTSS_HEADER_SIZE + 1 + hash_len)
throw Decoding_Error("Bad RTSS length field in header");
}
std::vector<uint8_t> V(shares.size());
secure_vector<uint8_t> recovered;
for(size_t i = RTSS_HEADER_SIZE + 1; i != shares[0].size(); ++i)
{
for(size_t j = 0; j != V.size(); ++j)
V[j] = shares[j].m_contents[i];
uint8_t r = 0;
for(size_t k = 0; k != shares.size(); ++k)
{
// L_i function:
uint8_t r2 = 1;
for(size_t l = 0; l != shares.size(); ++l)
{
if(k == l)
continue;
uint8_t share_k = shares[k].share_id();
uint8_t share_l = shares[l].share_id();
if(share_k == share_l)
throw Decoding_Error("Duplicate shares found in RTSS recovery");
uint8_t div = RTSS_EXP[(255 +
RTSS_LOG[share_l] -
RTSS_LOG[share_k ^ share_l]) % 255];
r2 = gfp_mul(r2, div);
}
r ^= gfp_mul(V[k], r2);
}
recovered.push_back(r);
}
if(hash)
{
if(recovered.size() < hash->output_length())
throw Decoding_Error("RTSS recovered value too short to be valid");
const size_t secret_len = recovered.size() - hash->output_length();
hash->update(recovered.data(), secret_len);
secure_vector<uint8_t> hash_check = hash->final();
if(!constant_time_compare(hash_check.data(),
&recovered[secret_len],
hash->output_length()))
{
throw Decoding_Error("RTSS hash check failed");
}
// remove the trailing hash value
recovered.resize(secret_len);
}
return recovered;
}
}
|