1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/*
* Format Preserving Encryption (FE1 scheme)
* (C) 2009 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/fpe_fe1.h>
#include <botan/numthry.h>
#include <botan/hmac.h>
#include <botan/sha2_32.h>
namespace Botan {
namespace FPE {
namespace {
// Normally FPE is for SSNs, CC#s, etc, nothing too big
const size_t MAX_N_BYTES = 128/8;
/*
* Factor n into a and b which are as close together as possible.
* Assumes n is composed mostly of small factors which is the case for
* typical uses of FPE (typically, n is a power of 10)
*
* Want a >= b since the safe number of rounds is 2+log_a(b); if a >= b
* then this is always 3
*/
void factor(BigInt n, BigInt& a, BigInt& b)
{
a = 1;
b = 1;
size_t n_low_zero = low_zero_bits(n);
a <<= (n_low_zero / 2);
b <<= n_low_zero - (n_low_zero / 2);
n >>= n_low_zero;
for(size_t i = 0; i != PRIME_TABLE_SIZE; ++i)
{
while(n % PRIMES[i] == 0)
{
a *= PRIMES[i];
if(a > b)
std::swap(a, b);
n /= PRIMES[i];
}
}
if(a > b)
std::swap(a, b);
a *= n;
if(a < b)
std::swap(a, b);
if(a <= 1 || b <= 1)
throw Exception("Could not factor n for use in FPE");
}
/*
* According to a paper by Rogaway, Bellare, etc, the min safe number
* of rounds to use for FPE is 2+log_a(b). If a >= b then log_a(b) <= 1
* so 3 rounds is safe. The FPE factorization routine should always
* return a >= b, so just confirm that and return 3.
*/
size_t rounds(const BigInt& a, const BigInt& b)
{
if(a < b)
throw Internal_Error("FPE rounds: a < b");
return 3;
}
/*
* A simple round function based on HMAC(SHA-256)
*/
class FPE_Encryptor
{
public:
FPE_Encryptor(const SymmetricKey& key,
const BigInt& n,
const std::vector<byte>& tweak);
BigInt operator()(size_t i, const BigInt& R);
private:
std::unique_ptr<MessageAuthenticationCode> mac;
std::vector<byte> mac_n_t;
};
FPE_Encryptor::FPE_Encryptor(const SymmetricKey& key,
const BigInt& n,
const std::vector<byte>& tweak)
{
mac.reset(new HMAC(new SHA_256));
mac->set_key(key);
std::vector<byte> n_bin = BigInt::encode(n);
if(n_bin.size() > MAX_N_BYTES)
throw Exception("N is too large for FPE encryption");
mac->update_be(static_cast<u32bit>(n_bin.size()));
mac->update(n_bin.data(), n_bin.size());
mac->update_be(static_cast<u32bit>(tweak.size()));
mac->update(tweak.data(), tweak.size());
mac_n_t = unlock(mac->final());
}
BigInt FPE_Encryptor::operator()(size_t round_no, const BigInt& R)
{
secure_vector<byte> r_bin = BigInt::encode_locked(R);
mac->update(mac_n_t);
mac->update_be(static_cast<u32bit>(round_no));
mac->update_be(static_cast<u32bit>(r_bin.size()));
mac->update(r_bin.data(), r_bin.size());
secure_vector<byte> X = mac->final();
return BigInt(X.data(), X.size());
}
}
/*
* Generic Z_n FPE encryption, FE1 scheme
*/
BigInt fe1_encrypt(const BigInt& n, const BigInt& X0,
const SymmetricKey& key,
const std::vector<byte>& tweak)
{
FPE_Encryptor F(key, n, tweak);
BigInt a, b;
factor(n, a, b);
const size_t r = rounds(a, b);
BigInt X = X0;
for(size_t i = 0; i != r; ++i)
{
BigInt L = X / b;
BigInt R = X % b;
BigInt W = (L + F(i, R)) % a;
X = a * R + W;
}
return X;
}
/*
* Generic Z_n FPE decryption, FD1 scheme
*/
BigInt fe1_decrypt(const BigInt& n, const BigInt& X0,
const SymmetricKey& key,
const std::vector<byte>& tweak)
{
FPE_Encryptor F(key, n, tweak);
BigInt a, b;
factor(n, a, b);
const size_t r = rounds(a, b);
BigInt X = X0;
for(size_t i = 0; i != r; ++i)
{
BigInt W = X % a;
BigInt R = X / a;
BigInt L = (W - F(r-i-1, R)) % a;
X = b * L + R;
}
return X;
}
}
}
|