1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/*
* Montgomery Exponentiation
* (C) 1999-2010,2012 Jack Lloyd
* 2016 Matthias Gierlings
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/def_powm.h>
#include <botan/numthry.h>
#include <botan/internal/mp_core.h>
namespace Botan {
/*
* Set the exponent
*/
void Montgomery_Exponentiator::set_exponent(const BigInt& exp)
{
m_exp = exp;
m_exp_bits = exp.bits();
}
/*
* Set the base
*/
void Montgomery_Exponentiator::set_base(const BigInt& base)
{
m_window_bits = Power_Mod::window_bits(m_exp.bits(), base.bits(), m_hints);
m_g.resize((1 << m_window_bits));
BigInt z(BigInt::Positive, 2 * (m_mod_words + 1));
secure_vector<word> workspace(z.size());
m_g[0] = 1;
bigint_monty_mul(z, m_g[0], m_R2_mod,
m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
m_g[0] = z;
m_g[1] = m_reducer.reduce(base);
bigint_monty_mul(z, m_g[1], m_R2_mod,
m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
m_g[1] = z;
const BigInt& x = m_g[1];
for(size_t i = 2; i != m_g.size(); ++i)
{
const BigInt& y = m_g[i-1];
bigint_monty_mul(z, x, y, m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
m_g[i] = z;
}
}
/*
* Compute the result
*/
BigInt Montgomery_Exponentiator::execute() const
{
const size_t exp_nibbles = (m_exp_bits + m_window_bits - 1) / m_window_bits;
BigInt x = m_R_mod;
const size_t z_size = 2*(m_mod_words + 1);
BigInt z(BigInt::Positive, z_size);
secure_vector<word> workspace(z.size());
for(size_t i = exp_nibbles; i > 0; --i)
{
for(size_t k = 0; k != m_window_bits; ++k)
{
bigint_monty_sqr(z, x, m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
x = z;
}
const uint32_t nibble = m_exp.get_substring(m_window_bits*(i-1), m_window_bits);
bigint_monty_mul(z, x, m_g[nibble],
m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
x = z;
}
x.grow_to(2*m_mod_words + 1);
bigint_monty_redc(x.mutable_data(),
m_modulus.data(), m_mod_words, m_mod_prime,
workspace.data());
return x;
}
/*
* Montgomery_Exponentiator Constructor
*/
Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod,
Power_Mod::Usage_Hints hints) :
m_modulus(mod),
m_reducer(m_modulus),
m_mod_words(m_modulus.sig_words()),
m_window_bits(1),
m_hints(hints)
{
// Montgomery reduction only works for positive odd moduli
if(!m_modulus.is_positive() || m_modulus.is_even())
throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus");
m_mod_prime = monty_inverse(mod.word_at(0));
const BigInt r = BigInt::power_of_2(m_mod_words * BOTAN_MP_WORD_BITS);
m_R_mod = m_reducer.reduce(r);
m_R2_mod = m_reducer.square(m_R_mod);
m_exp_bits = 0;
}
}
|