1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/*
* Number Theory Functions
* (C) 1999-2011 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/numthry.h>
#include <botan/reducer.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/mp_core.h>
#include <algorithm>
namespace Botan {
/*
* Return the number of 0 bits at the end of n
*/
size_t low_zero_bits(const BigInt& n)
{
size_t low_zero = 0;
if(n.is_positive() && n.is_nonzero())
{
for(size_t i = 0; i != n.size(); ++i)
{
const word x = n.word_at(i);
if(x)
{
low_zero += ctz(x);
break;
}
else
low_zero += BOTAN_MP_WORD_BITS;
}
}
return low_zero;
}
/*
* Calculate the GCD
*/
BigInt gcd(const BigInt& a, const BigInt& b)
{
if(a.is_zero() || b.is_zero()) return 0;
if(a == 1 || b == 1) return 1;
BigInt x = a, y = b;
x.set_sign(BigInt::Positive);
y.set_sign(BigInt::Positive);
size_t shift = std::min(low_zero_bits(x), low_zero_bits(y));
x >>= shift;
y >>= shift;
while(x.is_nonzero())
{
x >>= low_zero_bits(x);
y >>= low_zero_bits(y);
if(x >= y) { x -= y; x >>= 1; }
else { y -= x; y >>= 1; }
}
return (y << shift);
}
/*
* Calculate the LCM
*/
BigInt lcm(const BigInt& a, const BigInt& b)
{
return ((a * b) / gcd(a, b));
}
namespace {
/*
* If the modulus is odd, then we can avoid computing A and C. This is
* a critical path algorithm in some instances and an odd modulus is
* the common case for crypto, so worth special casing. See note 14.64
* in Handbook of Applied Cryptography for more details.
*/
BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod)
{
BigInt u = mod, v = n;
BigInt B = 0, D = 1;
while(u.is_nonzero())
{
const size_t u_zero_bits = low_zero_bits(u);
u >>= u_zero_bits;
for(size_t i = 0; i != u_zero_bits; ++i)
{
if(B.is_odd())
{ B -= mod; }
B >>= 1;
}
const size_t v_zero_bits = low_zero_bits(v);
v >>= v_zero_bits;
for(size_t i = 0; i != v_zero_bits; ++i)
{
if(D.is_odd())
{ D -= mod; }
D >>= 1;
}
if(u >= v) { u -= v; B -= D; }
else { v -= u; D -= B; }
}
if(v != 1)
return 0; // no modular inverse
while(D.is_negative()) D += mod;
while(D >= mod) D -= mod;
return D;
}
}
/*
* Find the Modular Inverse
*/
BigInt inverse_mod(const BigInt& n, const BigInt& mod)
{
if(mod.is_zero())
throw BigInt::DivideByZero();
if(mod.is_negative() || n.is_negative())
throw Invalid_Argument("inverse_mod: arguments must be non-negative");
if(n.is_zero() || (n.is_even() && mod.is_even()))
return 0; // fast fail checks
if(mod.is_odd())
return inverse_mod_odd_modulus(n, mod);
BigInt u = mod, v = n;
BigInt A = 1, B = 0, C = 0, D = 1;
while(u.is_nonzero())
{
const size_t u_zero_bits = low_zero_bits(u);
u >>= u_zero_bits;
for(size_t i = 0; i != u_zero_bits; ++i)
{
if(A.is_odd() || B.is_odd())
{ A += n; B -= mod; }
A >>= 1; B >>= 1;
}
const size_t v_zero_bits = low_zero_bits(v);
v >>= v_zero_bits;
for(size_t i = 0; i != v_zero_bits; ++i)
{
if(C.is_odd() || D.is_odd())
{ C += n; D -= mod; }
C >>= 1; D >>= 1;
}
if(u >= v) { u -= v; A -= C; B -= D; }
else { v -= u; C -= A; D -= B; }
}
if(v != 1)
return 0; // no modular inverse
while(D.is_negative()) D += mod;
while(D >= mod) D -= mod;
return D;
}
word monty_inverse(word input)
{
if(input == 0)
throw Exception("monty_inverse: divide by zero");
word b = input;
word x2 = 1, x1 = 0, y2 = 0, y1 = 1;
// First iteration, a = n+1
word q = bigint_divop(1, 0, b);
word r = (MP_WORD_MAX - q*b) + 1;
word x = x2 - q*x1;
word y = y2 - q*y1;
word a = b;
b = r;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
while(b > 0)
{
q = a / b;
r = a - q*b;
x = x2 - q*x1;
y = y2 - q*y1;
a = b;
b = r;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
// Now invert in addition space
y2 = (MP_WORD_MAX - y2) + 1;
return y2;
}
/*
* Modular Exponentiation
*/
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
{
Power_Mod pow_mod(mod);
/*
* Calling set_base before set_exponent means we end up using a
* minimal window. This makes sense given that here we know that any
* precomputation is wasted.
*/
pow_mod.set_base(base);
pow_mod.set_exponent(exp);
return pow_mod.execute();
}
namespace {
bool mr_witness(BigInt&& y,
const Modular_Reducer& reducer_n,
const BigInt& n_minus_1, size_t s)
{
if(y == 1 || y == n_minus_1)
return false;
for(size_t i = 1; i != s; ++i)
{
y = reducer_n.square(y);
if(y == 1) // found a non-trivial square root
return true;
if(y == n_minus_1) // -1, trivial square root, so give up
return false;
}
return true; // fails Fermat test
}
size_t mr_test_iterations(size_t n_bits, size_t prob, bool random)
{
const size_t base = (prob + 2) / 2; // worst case 4^-t error rate
/*
* For randomly chosen numbers we can use the estimates from
* http://www.math.dartmouth.edu/~carlp/PDF/paper88.pdf
*
* These values are derived from the inequality for p(k,t) given on
* the second page.
*/
if(random && prob <= 80)
{
if(n_bits >= 1536)
return 2; // < 2^-89
if(n_bits >= 1024)
return 4; // < 2^-89
if(n_bits >= 512)
return 5; // < 2^-80
if(n_bits >= 256)
return 11; // < 2^-80
}
return base;
}
}
/*
* Test for primaility using Miller-Rabin
*/
bool is_prime(const BigInt& n, RandomNumberGenerator& rng,
size_t prob, bool is_random)
{
if(n == 2)
return true;
if(n <= 1 || n.is_even())
return false;
// Fast path testing for small numbers (<= 65521)
if(n <= PRIMES[PRIME_TABLE_SIZE-1])
{
const u16bit num = n.word_at(0);
return std::binary_search(PRIMES, PRIMES + PRIME_TABLE_SIZE, num);
}
const size_t test_iterations = mr_test_iterations(n.bits(), prob, is_random);
const BigInt n_minus_1 = n - 1;
const size_t s = low_zero_bits(n_minus_1);
Fixed_Exponent_Power_Mod pow_mod(n_minus_1 >> s, n);
Modular_Reducer reducer(n);
for(size_t i = 0; i != test_iterations; ++i)
{
const BigInt a = BigInt::random_integer(rng, 2, n_minus_1);
BigInt y = pow_mod(a);
if(mr_witness(std::move(y), reducer, n_minus_1, s))
return false;
}
return true;
}
}
|