aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/math/numbertheory/numthry.cpp
blob: e3c673ea5904b8f2267894598737929cbc5eb912 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
* Number Theory Functions
* (C) 1999-2011 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/

#include <botan/numthry.h>
#include <botan/reducer.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/mp_core.h>
#include <algorithm>

namespace Botan {

namespace {

/*
* Miller-Rabin Primality Tester
*/
class MillerRabin_Test
   {
   public:
      bool is_witness(const BigInt& nonce);
      MillerRabin_Test(const BigInt& num);
   private:
      BigInt n, r, n_minus_1;
      size_t s;
      Fixed_Exponent_Power_Mod pow_mod;
      Modular_Reducer reducer;
   };

/*
* Miller-Rabin Test, as described in Handbook of Applied Cryptography
* section 4.24
*/
bool MillerRabin_Test::is_witness(const BigInt& a)
   {
   if(a < 2 || a >= n_minus_1)
      throw Invalid_Argument("Bad size for nonce in Miller-Rabin test");

   BigInt y = pow_mod(a);
   if(y == 1 || y == n_minus_1)
      return false;

   for(size_t i = 1; i != s; ++i)
      {
      y = reducer.square(y);

      if(y == 1) // found a non-trivial square root
         return true;

      if(y == n_minus_1) // -1, trivial square root, so give up
         return false;
      }

   if(y != n_minus_1) // fails Fermat test
      return true;

   return false;
   }

/*
* Miller-Rabin Constructor
*/
MillerRabin_Test::MillerRabin_Test(const BigInt& num)
   {
   if(num.is_even() || num < 3)
      throw Invalid_Argument("MillerRabin_Test: Invalid number for testing");

   n = num;
   n_minus_1 = n - 1;
   s = low_zero_bits(n_minus_1);
   r = n_minus_1 >> s;

   pow_mod = Fixed_Exponent_Power_Mod(r, n);
   reducer = Modular_Reducer(n);
   }

/*
* Miller-Rabin Iterations
*/
size_t miller_rabin_test_iterations(size_t bits, size_t level)
   {
   struct mapping { size_t bits; size_t verify_iter; size_t check_iter; };

   const mapping tests[] = {
      {   50, 55, 25 },
      {  100, 38, 22 },
      {  160, 32, 18 },
      {  163, 31, 17 },
      {  168, 30, 16 },
      {  177, 29, 16 },
      {  181, 28, 15 },
      {  185, 27, 15 },
      {  190, 26, 15 },
      {  195, 25, 14 },
      {  201, 24, 14 },
      {  208, 23, 14 },
      {  215, 22, 13 },
      {  222, 21, 13 },
      {  231, 20, 13 },
      {  241, 19, 12 },
      {  252, 18, 12 },
      {  264, 17, 12 },
      {  278, 16, 11 },
      {  294, 15, 10 },
      {  313, 14,  9 },
      {  334, 13,  8 },
      {  360, 12,  8 },
      {  392, 11,  7 },
      {  430, 10,  7 },
      {  479,  9,  6 },
      {  542,  8,  6 },
      {  626,  7,  5 },
      {  746,  6,  4 },
      {  926,  5,  3 },
      { 1232,  4,  2 },
      { 1853,  3,  2 },
      {    0,  0,  0 }
   };

   for(size_t i = 0; tests[i].bits; ++i)
      {
      if(bits <= tests[i].bits)
         {
         if(level >= 2)
            return tests[i].verify_iter;
         else if(level == 1)
            return tests[i].check_iter;
         else if(level == 0)
            return std::max<size_t>(tests[i].check_iter / 4, 1);
         }
      }

   return level > 0 ? 2 : 1; // for large inputs
   }

}

/*
* Return the number of 0 bits at the end of n
*/
size_t low_zero_bits(const BigInt& n)
   {
   size_t low_zero = 0;

   if(n.is_positive() && n.is_nonzero())
      {
      for(size_t i = 0; i != n.size(); ++i)
         {
         const word x = n.word_at(i);

         if(x)
            {
            low_zero += ctz(x);
            break;
            }
         else
            low_zero += BOTAN_MP_WORD_BITS;
         }
      }

   return low_zero;
   }

/*
* Calculate the GCD
*/
BigInt gcd(const BigInt& a, const BigInt& b)
   {
   if(a.is_zero() || b.is_zero()) return 0;
   if(a == 1 || b == 1)           return 1;

   BigInt x = a, y = b;
   x.set_sign(BigInt::Positive);
   y.set_sign(BigInt::Positive);
   size_t shift = std::min(low_zero_bits(x), low_zero_bits(y));

   x >>= shift;
   y >>= shift;

   while(x.is_nonzero())
      {
      x >>= low_zero_bits(x);
      y >>= low_zero_bits(y);
      if(x >= y) { x -= y; x >>= 1; }
      else       { y -= x; y >>= 1; }
      }

   return (y << shift);
   }

/*
* Calculate the LCM
*/
BigInt lcm(const BigInt& a, const BigInt& b)
   {
   return ((a * b) / gcd(a, b));
   }

namespace {

/*
* If the modulus is odd, then we can avoid computing A and C. This is
* a critical path algorithm in some instances and an odd modulus is
* the common case for crypto, so worth special casing. See note 14.64
* in Handbook of Applied Cryptography for more details.
*/
BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod)
   {
   BigInt u = mod, v = n;
   BigInt B = 0, D = 1;

   while(u.is_nonzero())
      {
      const size_t u_zero_bits = low_zero_bits(u);
      u >>= u_zero_bits;
      for(size_t i = 0; i != u_zero_bits; ++i)
         {
         if(B.is_odd())
            { B -= mod; }
         B >>= 1;
         }

      const size_t v_zero_bits = low_zero_bits(v);
      v >>= v_zero_bits;
      for(size_t i = 0; i != v_zero_bits; ++i)
         {
         if(D.is_odd())
            { D -= mod; }
         D >>= 1;
         }

      if(u >= v) { u -= v; B -= D; }
      else       { v -= u; D -= B; }
      }

   if(v != 1)
      return 0; // no modular inverse

   while(D.is_negative()) D += mod;
   while(D >= mod) D -= mod;

   return D;
   }

}

/*
* Find the Modular Inverse
*/
BigInt inverse_mod(const BigInt& n, const BigInt& mod)
   {
   if(mod.is_zero())
      throw BigInt::DivideByZero();
   if(mod.is_negative() || n.is_negative())
      throw Invalid_Argument("inverse_mod: arguments must be non-negative");

   if(n.is_zero() || (n.is_even() && mod.is_even()))
      return 0; // fast fail checks

   if(mod.is_odd())
      return inverse_mod_odd_modulus(n, mod);

   BigInt u = mod, v = n;
   BigInt A = 1, B = 0, C = 0, D = 1;

   while(u.is_nonzero())
      {
      const size_t u_zero_bits = low_zero_bits(u);
      u >>= u_zero_bits;
      for(size_t i = 0; i != u_zero_bits; ++i)
         {
         if(A.is_odd() || B.is_odd())
            { A += n; B -= mod; }
         A >>= 1; B >>= 1;
         }

      const size_t v_zero_bits = low_zero_bits(v);
      v >>= v_zero_bits;
      for(size_t i = 0; i != v_zero_bits; ++i)
         {
         if(C.is_odd() || D.is_odd())
            { C += n; D -= mod; }
         C >>= 1; D >>= 1;
         }

      if(u >= v) { u -= v; A -= C; B -= D; }
      else       { v -= u; C -= A; D -= B; }
      }

   if(v != 1)
      return 0; // no modular inverse

   while(D.is_negative()) D += mod;
   while(D >= mod) D -= mod;

   return D;
   }

word monty_inverse(word input)
   {
   word b = input;
   word x2 = 1, x1 = 0, y2 = 0, y1 = 1;

   // First iteration, a = n+1
   word q = bigint_divop(1, 0, b);
   word r = (MP_WORD_MAX - q*b) + 1;
   word x = x2 - q*x1;
   word y = y2 - q*y1;

   word a = b;
   b = r;
   x2 = x1;
   x1 = x;
   y2 = y1;
   y1 = y;

   while(b > 0)
      {
      q = a / b;
      r = a - q*b;
      x = x2 - q*x1;
      y = y2 - q*y1;

      a = b;
      b = r;
      x2 = x1;
      x1 = x;
      y2 = y1;
      y1 = y;
      }

   // Now invert in addition space
   y2 = (MP_WORD_MAX - y2) + 1;

   return y2;
   }

/*
* Modular Exponentiation
*/
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
   {
   Power_Mod pow_mod(mod);

   /*
   * Calling set_base before set_exponent means we end up using a
   * minimal window. This makes sense given that here we know that any
   * precomputation is wasted.
   */
   pow_mod.set_base(base);
   pow_mod.set_exponent(exp);
   return pow_mod.execute();
   }

/*
* Test for primaility using Miller-Rabin
*/
bool primality_test(const BigInt& n,
                    RandomNumberGenerator& rng,
                    size_t level)
   {
   if(n == 2)
      return true;
   if(n <= 1 || n.is_even())
      return false;

   // Fast path testing for small numbers (<= 65521)
   if(n <= PRIMES[PRIME_TABLE_SIZE-1])
      {
      const word num = n.word_at(0);

      for(size_t i = 0; PRIMES[i]; ++i)
         {
         if(num == PRIMES[i])
            return true;
         if(num < PRIMES[i])
            return false;
         }

      return false;
      }

   if(level > 2)
      level = 2;

   const size_t PREF_NONCE_BITS = 192;

   const size_t NONCE_BITS = std::min(n.bits() - 2, PREF_NONCE_BITS);

   MillerRabin_Test mr(n);

   const size_t tests = miller_rabin_test_iterations(n.bits(), level);

   BigInt nonce;
   for(size_t i = 0; i != tests; ++i)
      {
      while(nonce < 2 || nonce >= (n-1))
         nonce.randomize(rng, NONCE_BITS);

      if(mr.is_witness(nonce))
         return false;
      }
   return true;
   }

}