1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
/*
* NIST prime reductions
* (C) 2014,2015,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/curve_nistp.h>
#include <botan/internal/mp_core.h>
#include <botan/internal/mp_asmi.h>
namespace Botan {
const BigInt& prime_p521()
{
static const BigInt p521("0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
return p521;
}
void redc_p521(BigInt& x, secure_vector<word>& ws)
{
const size_t p_full_words = 521 / BOTAN_MP_WORD_BITS;
const size_t p_top_bits = 521 % BOTAN_MP_WORD_BITS;
const size_t p_words = p_full_words + 1;
const size_t x_sw = x.sig_words();
if(x_sw < p_words)
return; // already smaller
if(ws.size() < p_words + 1)
ws.resize(p_words + 1);
clear_mem(ws.data(), ws.size());
bigint_shr2(ws.data(), x.data(), x_sw, p_full_words, p_top_bits);
x.mask_bits(521);
// Word-level carry will be zero
word carry = bigint_add3_nc(x.mutable_data(), x.data(), p_words, ws.data(), p_words);
BOTAN_ASSERT_EQUAL(carry, 0, "Final carry in P-521 reduction");
// Now find the actual carry in bit 522
const uint8_t bit_522_set = x.word_at(p_full_words) >> (p_top_bits);
#if (BOTAN_MP_WORD_BITS == 64)
static const word p521_words[9] = {
0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF,
0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF,
0x1FF };
#endif
/*
* If bit 522 is set then we overflowed and must reduce. Otherwise, if the
* top bit is set, it is possible we have x == 2**521 - 1 so check for that.
*/
if(bit_522_set)
{
#if (BOTAN_MP_WORD_BITS == 64)
bigint_sub2(x.mutable_data(), x.size(), p521_words, 9);
#else
x -= prime_p521();
#endif
}
else if(x.word_at(p_full_words) >> (p_top_bits - 1))
{
/*
* Otherwise we must reduce if p is exactly 2^512-1
*/
word possibly_521 = MP_WORD_MAX;
for(size_t i = 0; i != p_full_words; ++i)
possibly_521 &= x.word_at(i);
if(possibly_521 == MP_WORD_MAX)
x.reduce_below(prime_p521(), ws);
}
}
#if defined(BOTAN_HAS_NIST_PRIME_REDUCERS_W32)
namespace {
/**
* Treating this MPI as a sequence of 32-bit words in big-endian
* order, return word i (or 0 if out of range)
*/
inline uint32_t get_uint32_t(const BigInt& x, size_t i)
{
#if (BOTAN_MP_WORD_BITS == 32)
return x.word_at(i);
#elif (BOTAN_MP_WORD_BITS == 64)
return static_cast<uint32_t>(x.word_at(i/2) >> ((i % 2)*32));
#else
#error "Not implemented"
#endif
}
/**
* Treating this MPI as a sequence of 32-bit words in big-endian
* order, set word i to the value x
*/
template<typename T>
inline void set_uint32_t(BigInt& x, size_t i, T v_in)
{
const uint32_t v = static_cast<uint32_t>(v_in);
#if (BOTAN_MP_WORD_BITS == 32)
x.set_word_at(i, v);
#elif (BOTAN_MP_WORD_BITS == 64)
const word shift_32 = (i % 2) * 32;
const word w = (x.word_at(i/2) & (static_cast<word>(0xFFFFFFFF) << (32-shift_32))) | (static_cast<word>(v) << shift_32);
x.set_word_at(i/2, w);
#else
#error "Not implemented"
#endif
}
}
const BigInt& prime_p192()
{
static const BigInt p192("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF");
return p192;
}
void redc_p192(BigInt& x, secure_vector<word>& ws)
{
const uint32_t X6 = get_uint32_t(x, 6);
const uint32_t X7 = get_uint32_t(x, 7);
const uint32_t X8 = get_uint32_t(x, 8);
const uint32_t X9 = get_uint32_t(x, 9);
const uint32_t X10 = get_uint32_t(x, 10);
const uint32_t X11 = get_uint32_t(x, 11);
x.mask_bits(192);
uint64_t S = 0;
S += get_uint32_t(x, 0);
S += X6;
S += X10;
set_uint32_t(x, 0, S);
S >>= 32;
S += get_uint32_t(x, 1);
S += X7;
S += X11;
set_uint32_t(x, 1, S);
S >>= 32;
S += get_uint32_t(x, 2);
S += X6;
S += X8;
S += X10;
set_uint32_t(x, 2, S);
S >>= 32;
S += get_uint32_t(x, 3);
S += X7;
S += X9;
S += X11;
set_uint32_t(x, 3, S);
S >>= 32;
S += get_uint32_t(x, 4);
S += X8;
S += X10;
set_uint32_t(x, 4, S);
S >>= 32;
S += get_uint32_t(x, 5);
S += X9;
S += X11;
set_uint32_t(x, 5, S);
S >>= 32;
set_uint32_t(x, 6, S);
// No underflow possible
x.reduce_below(prime_p192(), ws);
}
const BigInt& prime_p224()
{
static const BigInt p224("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001");
return p224;
}
void redc_p224(BigInt& x, secure_vector<word>& ws)
{
const uint32_t X7 = get_uint32_t(x, 7);
const uint32_t X8 = get_uint32_t(x, 8);
const uint32_t X9 = get_uint32_t(x, 9);
const uint32_t X10 = get_uint32_t(x, 10);
const uint32_t X11 = get_uint32_t(x, 11);
const uint32_t X12 = get_uint32_t(x, 12);
const uint32_t X13 = get_uint32_t(x, 13);
x.mask_bits(224);
// One full copy of P224 is added, so the result is always positive
int64_t S = 0;
S += get_uint32_t(x, 0);
S += 1;
S -= X7;
S -= X11;
set_uint32_t(x, 0, S);
S >>= 32;
S += get_uint32_t(x, 1);
S -= X8;
S -= X12;
set_uint32_t(x, 1, S);
S >>= 32;
S += get_uint32_t(x, 2);
S -= X9;
S -= X13;
set_uint32_t(x, 2, S);
S >>= 32;
S += get_uint32_t(x, 3);
S += 0xFFFFFFFF;
S += X7;
S += X11;
S -= X10;
set_uint32_t(x, 3, S);
S >>= 32;
S += get_uint32_t(x, 4);
S += 0xFFFFFFFF;
S += X8;
S += X12;
S -= X11;
set_uint32_t(x, 4, S);
S >>= 32;
S += get_uint32_t(x, 5);
S += 0xFFFFFFFF;
S += X9;
S += X13;
S -= X12;
set_uint32_t(x, 5, S);
S >>= 32;
S += get_uint32_t(x, 6);
S += 0xFFFFFFFF;
S += X10;
S -= X13;
set_uint32_t(x, 6, S);
S >>= 32;
set_uint32_t(x, 7, S);
BOTAN_ASSERT_EQUAL(S >> 32, 0, "No underflow");
x.reduce_below(prime_p224(), ws);
}
const BigInt& prime_p256()
{
static const BigInt p256("0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF");
return p256;
}
void redc_p256(BigInt& x, secure_vector<word>& ws)
{
static const size_t p256_limbs = (BOTAN_MP_WORD_BITS == 32) ? 8 : 4;
BOTAN_UNUSED(ws);
const int64_t X08 = get_uint32_t(x, 8);
const int64_t X09 = get_uint32_t(x, 9);
const int64_t X10 = get_uint32_t(x, 10);
const int64_t X11 = get_uint32_t(x, 11);
const int64_t X12 = get_uint32_t(x, 12);
const int64_t X13 = get_uint32_t(x, 13);
const int64_t X14 = get_uint32_t(x, 14);
const int64_t X15 = get_uint32_t(x, 15);
// Adds 6 * P-256 to prevent underflow
const int64_t S0 = 0xFFFFFFFA + X08 + X09 - X11 - X12 - X13 - X14;
const int64_t S1 = 0xFFFFFFFF + X09 + X10 - X12 - X13 - X14 - X15;
const int64_t S2 = 0xFFFFFFFF + X10 + X11 - X13 - X14 - X15;
const int64_t S3 = 0x00000005 + (X11 + X12)*2 + X13 - X15 - X08 - X09;
const int64_t S4 = 0x00000000 + (X12 + X13)*2 + X14 - X09 - X10;
const int64_t S5 = 0x00000000 + (X13 + X14)*2 + X15 - X10 - X11;
const int64_t S6 = 0x00000006 + X13 + X14*3 + X15*2 - X08 - X09;
const int64_t S7 = 0xFFFFFFFA + X15*3 + X08 - X10 - X11 - X12 - X13;
x.mask_bits(256);
x.shrink_to_fit(p256_limbs + 1);
int64_t S = 0;
S = get_uint32_t(x, 0);
S += S0;
set_uint32_t(x, 0, S);
S >>= 32;
S += get_uint32_t(x, 1);
S += S1;
set_uint32_t(x, 1, S);
S >>= 32;
S += get_uint32_t(x, 2);
S += S2;
set_uint32_t(x, 2, S);
S >>= 32;
S += get_uint32_t(x, 3);
S += S3;
set_uint32_t(x, 3, S);
S >>= 32;
S += get_uint32_t(x, 4);
S += S4;
set_uint32_t(x, 4, S);
S >>= 32;
S += get_uint32_t(x, 5);
S += S5;
set_uint32_t(x, 5, S);
S >>= 32;
S += get_uint32_t(x, 6);
S += S6;
set_uint32_t(x, 6, S);
S >>= 32;
S += get_uint32_t(x, 7);
S += S7;
set_uint32_t(x, 7, S);
S >>= 32;
S += 5; // the top digits of 6*P-256
BOTAN_ASSERT(S >= 0 && S <= 10, "Expected overflow");
/*
This is a table of (i*P-256) % 2**256 for i in 1...10
*/
static const word p256_mults[11][p256_limbs] = {
#if (BOTAN_MP_WORD_BITS == 64)
{0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF, 0x0000000000000000, 0xFFFFFFFF00000001},
{0xFFFFFFFFFFFFFFFE, 0x00000001FFFFFFFF, 0x0000000000000000, 0xFFFFFFFE00000002},
{0xFFFFFFFFFFFFFFFD, 0x00000002FFFFFFFF, 0x0000000000000000, 0xFFFFFFFD00000003},
{0xFFFFFFFFFFFFFFFC, 0x00000003FFFFFFFF, 0x0000000000000000, 0xFFFFFFFC00000004},
{0xFFFFFFFFFFFFFFFB, 0x00000004FFFFFFFF, 0x0000000000000000, 0xFFFFFFFB00000005},
{0xFFFFFFFFFFFFFFFA, 0x00000005FFFFFFFF, 0x0000000000000000, 0xFFFFFFFA00000006},
{0xFFFFFFFFFFFFFFF9, 0x00000006FFFFFFFF, 0x0000000000000000, 0xFFFFFFF900000007},
{0xFFFFFFFFFFFFFFF8, 0x00000007FFFFFFFF, 0x0000000000000000, 0xFFFFFFF800000008},
{0xFFFFFFFFFFFFFFF7, 0x00000008FFFFFFFF, 0x0000000000000000, 0xFFFFFFF700000009},
{0xFFFFFFFFFFFFFFF6, 0x00000009FFFFFFFF, 0x0000000000000000, 0xFFFFFFF60000000A},
{0xFFFFFFFFFFFFFFF5, 0x0000000AFFFFFFFF, 0x0000000000000000, 0xFFFFFFF50000000B},
#else
{0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF},
{0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000001, 0x00000000, 0x00000000, 0x00000002, 0xFFFFFFFE},
{0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000002, 0x00000000, 0x00000000, 0x00000003, 0xFFFFFFFD},
{0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000003, 0x00000000, 0x00000000, 0x00000004, 0xFFFFFFFC},
{0xFFFFFFFB, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000004, 0x00000000, 0x00000000, 0x00000005, 0xFFFFFFFB},
{0xFFFFFFFA, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000005, 0x00000000, 0x00000000, 0x00000006, 0xFFFFFFFA},
{0xFFFFFFF9, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000006, 0x00000000, 0x00000000, 0x00000007, 0xFFFFFFF9},
{0xFFFFFFF8, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000, 0x00000000, 0x00000008, 0xFFFFFFF8},
{0xFFFFFFF7, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000008, 0x00000000, 0x00000000, 0x00000009, 0xFFFFFFF7},
{0xFFFFFFF6, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000009, 0x00000000, 0x00000000, 0x0000000A, 0xFFFFFFF6},
{0xFFFFFFF5, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000A, 0x00000000, 0x00000000, 0x0000000B, 0xFFFFFFF5},
#endif
};
word borrow = bigint_sub2(x.mutable_data(), x.size(), p256_mults[S], p256_limbs);
BOTAN_ASSERT(borrow == 0 || borrow == 1, "Expected borrow during P-256 reduction");
if(borrow)
{
bigint_add2(x.mutable_data(), x.size() - 1, p256_mults[0], p256_limbs);
}
}
const BigInt& prime_p384()
{
static const BigInt p384("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF");
return p384;
}
void redc_p384(BigInt& x, secure_vector<word>& ws)
{
BOTAN_UNUSED(ws);
static const size_t p384_limbs = (BOTAN_MP_WORD_BITS == 32) ? 12 : 6;
const int64_t X12 = get_uint32_t(x, 12);
const int64_t X13 = get_uint32_t(x, 13);
const int64_t X14 = get_uint32_t(x, 14);
const int64_t X15 = get_uint32_t(x, 15);
const int64_t X16 = get_uint32_t(x, 16);
const int64_t X17 = get_uint32_t(x, 17);
const int64_t X18 = get_uint32_t(x, 18);
const int64_t X19 = get_uint32_t(x, 19);
const int64_t X20 = get_uint32_t(x, 20);
const int64_t X21 = get_uint32_t(x, 21);
const int64_t X22 = get_uint32_t(x, 22);
const int64_t X23 = get_uint32_t(x, 23);
// One copy of P-384 is added to prevent underflow
const int64_t S0 = 0xFFFFFFFF + X12 + X20 + X21 - X23;
const int64_t S1 = 0x00000000 + X13 + X22 + X23 - X12 - X20;
const int64_t S2 = 0x00000000 + X14 + X23 - X13 - X21;
const int64_t S3 = 0xFFFFFFFF + X12 + X15 + X20 + X21 - X14 - X22 - X23;
const int64_t S4 = 0xFFFFFFFE + X12 + X13 + X16 + X20 + X21*2 + X22 - X15 - X23*2;
const int64_t S5 = 0xFFFFFFFF + X13 + X14 + X17 + X21 + X22*2 + X23 - X16;
const int64_t S6 = 0xFFFFFFFF + X14 + X15 + X18 + X22 + X23*2 - X17;
const int64_t S7 = 0xFFFFFFFF + X15 + X16 + X19 + X23 - X18;
const int64_t S8 = 0xFFFFFFFF + X16 + X17 + X20 - X19;
const int64_t S9 = 0xFFFFFFFF + X17 + X18 + X21 - X20;
const int64_t SA = 0xFFFFFFFF + X18 + X19 + X22 - X21;
const int64_t SB = 0xFFFFFFFF + X19 + X20 + X23 - X22;
x.mask_bits(384);
x.shrink_to_fit(p384_limbs + 1);
int64_t S = 0;
S = get_uint32_t(x, 0);
S += S0;
set_uint32_t(x, 0, S);
S >>= 32;
S += get_uint32_t(x, 1);
S += S1;
set_uint32_t(x, 1, S);
S >>= 32;
S += get_uint32_t(x, 2);
S += S2;
set_uint32_t(x, 2, S);
S >>= 32;
S += get_uint32_t(x, 3);
S += S3;
set_uint32_t(x, 3, S);
S >>= 32;
S += get_uint32_t(x, 4);
S += S4;
set_uint32_t(x, 4, S);
S >>= 32;
S += get_uint32_t(x, 5);
S += S5;
set_uint32_t(x, 5, S);
S >>= 32;
S += get_uint32_t(x, 6);
S += S6;
set_uint32_t(x, 6, S);
S >>= 32;
S += get_uint32_t(x, 7);
S += S7;
set_uint32_t(x, 7, S);
S >>= 32;
S += get_uint32_t(x, 8);
S += S8;
set_uint32_t(x, 8, S);
S >>= 32;
S += get_uint32_t(x, 9);
S += S9;
set_uint32_t(x, 9, S);
S >>= 32;
S += get_uint32_t(x, 10);
S += SA;
set_uint32_t(x, 10, S);
S >>= 32;
S += get_uint32_t(x, 11);
S += SB;
set_uint32_t(x, 11, S);
S >>= 32;
BOTAN_ASSERT(S >= 0 && S <= 4, "Expected overflow in P-384 reduction");
/*
This is a table of (i*P-384) % 2**384 for i in 1...4
*/
static const word p384_mults[5][p384_limbs] = {
#if (BOTAN_MP_WORD_BITS == 64)
{0x00000000FFFFFFFF, 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0x00000001FFFFFFFE, 0xFFFFFFFE00000000, 0xFFFFFFFFFFFFFFFD, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0x00000002FFFFFFFD, 0xFFFFFFFD00000000, 0xFFFFFFFFFFFFFFFC, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0x00000003FFFFFFFC, 0xFFFFFFFC00000000, 0xFFFFFFFFFFFFFFFB, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0x00000004FFFFFFFB, 0xFFFFFFFB00000000, 0xFFFFFFFFFFFFFFFA, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
#else
{0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFE, 0x00000001, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFD, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFD, 0x00000002, 0x00000000, 0xFFFFFFFD, 0xFFFFFFFC, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFC, 0x00000003, 0x00000000, 0xFFFFFFFC, 0xFFFFFFFB, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFB, 0x00000004, 0x00000000, 0xFFFFFFFB, 0xFFFFFFFA, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
#endif
};
word borrow = bigint_sub2(x.mutable_data(), x.size(), p384_mults[S], p384_limbs);
BOTAN_ASSERT(borrow == 0 || borrow == 1, "Expected borrow during P-384 reduction");
if(borrow)
{
bigint_add2(x.mutable_data(), x.size() - 1, p384_mults[0], p384_limbs);
}
}
#endif
}
|