1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/*
* Point arithmetic on elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
* 2008-2011,2012,2014 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/point_gfp.h>
#include <botan/numthry.h>
namespace Botan {
PointGFp::PointGFp(const CurveGFp& curve) :
curve(curve),
coord_x(0),
coord_y(1),
coord_z(0)
{
curve.to_rep(coord_x, ws);
curve.to_rep(coord_y, ws);
curve.to_rep(coord_z, ws);
}
PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) :
curve(curve),
coord_x(x),
coord_y(y),
coord_z(1)
{
curve.to_rep(coord_x, ws);
curve.to_rep(coord_y, ws);
curve.to_rep(coord_z, ws);
}
// Point addition
void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn)
{
if(is_zero())
{
coord_x = rhs.coord_x;
coord_y = rhs.coord_y;
coord_z = rhs.coord_z;
return;
}
else if(rhs.is_zero())
return;
const BigInt& p = curve.get_p();
BigInt& rhs_z2 = ws_bn[0];
BigInt& U1 = ws_bn[1];
BigInt& S1 = ws_bn[2];
BigInt& lhs_z2 = ws_bn[3];
BigInt& U2 = ws_bn[4];
BigInt& S2 = ws_bn[5];
BigInt& H = ws_bn[6];
BigInt& r = ws_bn[7];
curve_sqr(rhs_z2, rhs.coord_z);
curve_mult(U1, coord_x, rhs_z2);
curve_mult(S1, coord_y, curve_mult(rhs.coord_z, rhs_z2));
curve_sqr(lhs_z2, coord_z);
curve_mult(U2, rhs.coord_x, lhs_z2);
curve_mult(S2, rhs.coord_y, curve_mult(coord_z, lhs_z2));
H = U2;
H -= U1;
if(H.is_negative())
H += p;
r = S2;
r -= S1;
if(r.is_negative())
r += p;
if(H.is_zero())
{
if(r.is_zero())
{
mult2(ws_bn);
return;
}
*this = PointGFp(curve); // setting myself to zero
return;
}
curve_sqr(U2, H);
curve_mult(S2, U2, H);
U2 = curve_mult(U1, U2);
curve_sqr(coord_x, r);
coord_x -= S2;
coord_x -= (U2 << 1);
while(coord_x.is_negative())
coord_x += p;
U2 -= coord_x;
if(U2.is_negative())
U2 += p;
curve_mult(coord_y, r, U2);
coord_y -= curve_mult(S1, S2);
if(coord_y.is_negative())
coord_y += p;
curve_mult(coord_z, curve_mult(coord_z, rhs.coord_z), H);
}
// *this *= 2
void PointGFp::mult2(std::vector<BigInt>& ws_bn)
{
if(is_zero())
return;
else if(coord_y.is_zero())
{
*this = PointGFp(curve); // setting myself to zero
return;
}
const BigInt& p = curve.get_p();
BigInt& y_2 = ws_bn[0];
BigInt& S = ws_bn[1];
BigInt& z4 = ws_bn[2];
BigInt& a_z4 = ws_bn[3];
BigInt& M = ws_bn[4];
BigInt& U = ws_bn[5];
BigInt& x = ws_bn[6];
BigInt& y = ws_bn[7];
BigInt& z = ws_bn[8];
curve_sqr(y_2, coord_y);
curve_mult(S, coord_x, y_2);
S <<= 2; // * 4
while(S >= p)
S -= p;
curve_sqr(z4, curve_sqr(coord_z));
curve_mult(a_z4, curve.get_a_rep(), z4);
M = curve_sqr(coord_x);
M *= 3;
M += a_z4;
while(M >= p)
M -= p;
curve_sqr(x, M);
x -= (S << 1);
while(x.is_negative())
x += p;
curve_sqr(U, y_2);
U <<= 3;
while(U >= p)
U -= p;
S -= x;
while(S.is_negative())
S += p;
curve_mult(y, M, S);
y -= U;
if(y.is_negative())
y += p;
curve_mult(z, coord_y, coord_z);
z <<= 1;
if(z >= p)
z -= p;
coord_x = x;
coord_y = y;
coord_z = z;
}
// arithmetic operators
PointGFp& PointGFp::operator+=(const PointGFp& rhs)
{
std::vector<BigInt> ws(9);
add(rhs, ws);
return *this;
}
PointGFp& PointGFp::operator-=(const PointGFp& rhs)
{
PointGFp minus_rhs = PointGFp(rhs).negate();
if(is_zero())
*this = minus_rhs;
else
*this += minus_rhs;
return *this;
}
PointGFp& PointGFp::operator*=(const BigInt& scalar)
{
*this = scalar * *this;
return *this;
}
PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1,
const PointGFp& p2, const BigInt& z2)
{
const PointGFp p3 = p1 + p2;
PointGFp H(p1.curve); // create as zero
size_t bits_left = std::max(z1.bits(), z2.bits());
std::vector<BigInt> ws(9);
while(bits_left)
{
H.mult2(ws);
const bool z1_b = z1.get_bit(bits_left - 1);
const bool z2_b = z2.get_bit(bits_left - 1);
if(z1_b == true && z2_b == true)
H.add(p3, ws);
else if(z1_b)
H.add(p1, ws);
else if(z2_b)
H.add(p2, ws);
--bits_left;
}
if(z1.is_negative() != z2.is_negative())
H.negate();
return H;
}
PointGFp operator*(const BigInt& scalar, const PointGFp& point)
{
//BOTAN_ASSERT(point.on_the_curve(), "Input is valid");
const CurveGFp& curve = point.get_curve();
if(scalar.is_zero())
return PointGFp(curve); // zero point
std::vector<BigInt> ws(9);
if(scalar.abs() <= 2) // special cases for small values
{
byte value = scalar.abs().byte_at(0);
PointGFp result = point;
if(value == 2)
result.mult2(ws);
if(scalar.is_negative())
result.negate();
return result;
}
const size_t scalar_bits = scalar.bits();
PointGFp x1 = PointGFp(curve);
PointGFp x2 = point;
size_t bits_left = scalar_bits;
// Montgomery Ladder
while(bits_left)
{
const bool bit_set = scalar.get_bit(bits_left - 1);
if(bit_set)
{
x1.add(x2, ws);
x2.mult2(ws);
}
else
{
x2.add(x1, ws);
x1.mult2(ws);
}
--bits_left;
}
if(scalar.is_negative())
x1.negate();
//BOTAN_ASSERT(x1.on_the_curve(), "Output is on the curve");
return x1;
}
BigInt PointGFp::get_affine_x() const
{
if(is_zero())
throw Illegal_Transformation("Cannot convert zero point to affine");
BigInt z2 = curve_sqr(coord_z);
curve.from_rep(z2, ws);
z2 = inverse_mod(z2, curve.get_p());
return curve_mult(z2, coord_x);
}
BigInt PointGFp::get_affine_y() const
{
if(is_zero())
throw Illegal_Transformation("Cannot convert zero point to affine");
BigInt z3 = curve_mult(coord_z, curve_sqr(coord_z));
z3 = inverse_mod(z3, curve.get_p());
curve.to_rep(z3, ws);
return curve_mult(z3, coord_y);
}
bool PointGFp::on_the_curve() const
{
/*
Is the point still on the curve?? (If everything is correct, the
point is always on its curve; then the function will return true.
If somehow the state is corrupted, which suggests a fault attack
(or internal computational error), then return false.
*/
if(is_zero())
return true;
const BigInt y2 = curve.from_rep(curve_sqr(coord_y), ws);
const BigInt x3 = curve_mult(coord_x, curve_sqr(coord_x));
const BigInt ax = curve_mult(coord_x, curve.get_a_rep());
const BigInt z2 = curve_sqr(coord_z);
if(coord_z == z2) // Is z equal to 1 (in Montgomery form)?
{
if(y2 != curve.from_rep(x3 + ax + curve.get_b_rep(), ws))
return false;
}
const BigInt z3 = curve_mult(coord_z, z2);
const BigInt ax_z4 = curve_mult(ax, curve_sqr(z2));
const BigInt b_z6 = curve_mult(curve.get_b_rep(), curve_sqr(z3));
if(y2 != curve.from_rep(x3 + ax_z4 + b_z6, ws))
return false;
return true;
}
// swaps the states of *this and other, does not throw!
void PointGFp::swap(PointGFp& other)
{
curve.swap(other.curve);
coord_x.swap(other.coord_x);
coord_y.swap(other.coord_y);
coord_z.swap(other.coord_z);
ws.swap(other.ws);
}
bool PointGFp::operator==(const PointGFp& other) const
{
if(get_curve() != other.get_curve())
return false;
// If this is zero, only equal if other is also zero
if(is_zero())
return other.is_zero();
return (get_affine_x() == other.get_affine_x() &&
get_affine_y() == other.get_affine_y());
}
// encoding and decoding
secure_vector<byte> EC2OSP(const PointGFp& point, byte format)
{
if(point.is_zero())
return secure_vector<byte>(1); // single 0 byte
const size_t p_bytes = point.get_curve().get_p().bytes();
BigInt x = point.get_affine_x();
BigInt y = point.get_affine_y();
secure_vector<byte> bX = BigInt::encode_1363(x, p_bytes);
secure_vector<byte> bY = BigInt::encode_1363(y, p_bytes);
if(format == PointGFp::UNCOMPRESSED)
{
secure_vector<byte> result;
result.push_back(0x04);
result += bX;
result += bY;
return result;
}
else if(format == PointGFp::COMPRESSED)
{
secure_vector<byte> result;
result.push_back(0x02 | static_cast<byte>(y.get_bit(0)));
result += bX;
return result;
}
else if(format == PointGFp::HYBRID)
{
secure_vector<byte> result;
result.push_back(0x06 | static_cast<byte>(y.get_bit(0)));
result += bX;
result += bY;
return result;
}
else
throw Invalid_Argument("EC2OSP illegal point encoding");
}
namespace {
BigInt decompress_point(bool yMod2,
const BigInt& x,
const CurveGFp& curve)
{
BigInt xpow3 = x * x * x;
const BigInt& p = curve.get_p();
BigInt g = curve.get_a() * x;
g += xpow3;
g += curve.get_b();
g = g % p;
BigInt z = ressol(g, p);
if(z < 0)
throw Illegal_Point("error during EC point decompression");
if(z.get_bit(0) != yMod2)
z = p - z;
return z;
}
}
PointGFp OS2ECP(const byte data[], size_t data_len,
const CurveGFp& curve)
{
if(data_len <= 1)
return PointGFp(curve); // return zero
const byte pc = data[0];
BigInt x, y;
if(pc == 2 || pc == 3)
{
//compressed form
x = BigInt::decode(&data[1], data_len - 1);
const bool y_mod_2 = ((pc & 0x01) == 1);
y = decompress_point(y_mod_2, x, curve);
}
else if(pc == 4)
{
const size_t l = (data_len - 1) / 2;
// uncompressed form
x = BigInt::decode(&data[1], l);
y = BigInt::decode(&data[l+1], l);
}
else if(pc == 6 || pc == 7)
{
const size_t l = (data_len - 1) / 2;
// hybrid form
x = BigInt::decode(&data[1], l);
y = BigInt::decode(&data[l+1], l);
const bool y_mod_2 = ((pc & 0x01) == 1);
if(decompress_point(y_mod_2, x, curve) != y)
throw Illegal_Point("OS2ECP: Decoding error in hybrid format");
}
else
throw Invalid_Argument("OS2ECP: Unknown format type " + std::to_string(pc));
PointGFp result(curve, x, y);
if(!result.on_the_curve())
throw Illegal_Point("OS2ECP: Decoded point was not on the curve");
return result;
}
}
|