1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/*
* KDFs defined in NIST SP 800-108
* (C) 2016 Kai Michaelis
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/sp800_108.h>
#include <botan/hmac.h>
#include <iterator>
namespace Botan {
SP800_108_Counter* SP800_108_Counter::make(const Spec& spec)
{
if(auto mac = MessageAuthenticationCode::create(spec.arg(0)))
return new SP800_108_Counter(mac.release());
if(auto mac = MessageAuthenticationCode::create("HMAC(" + spec.arg(0) + ")"))
return new SP800_108_Counter(mac.release());
return nullptr;
}
size_t SP800_108_Counter::kdf(byte key[], size_t key_len,
const byte secret[], size_t secret_len,
const byte salt[], size_t salt_len,
const byte label[], size_t label_len) const
{
const std::size_t prf_len = m_prf->output_length();
const byte delim = 0;
byte *p = key;
uint32_t counter = 1;
uint32_t length = key_len * 8;
byte be_len[4] = { 0 };
secure_vector<byte> tmp;
store_be(length, be_len);
m_prf->set_key(secret, secret_len);
while(p < key + key_len && counter != 0)
{
const std::size_t to_copy = std::min< std::size_t >(key + key_len - p, prf_len);
byte be_cnt[4] = { 0 };
store_be(counter, be_cnt);
m_prf->update(be_cnt,4);
m_prf->update(label,label_len);
m_prf->update(delim);
m_prf->update(salt,salt_len);
m_prf->update(be_len,4);
m_prf->final(tmp);
std::move(tmp.begin(), tmp.begin() + to_copy, p);
++counter;
if (counter == 0)
throw Invalid_Argument("Can't process more than 4GB");
p += to_copy;
}
return key_len;
}
SP800_108_Feedback* SP800_108_Feedback::make(const Spec& spec)
{
if(auto mac = MessageAuthenticationCode::create(spec.arg(0)))
return new SP800_108_Feedback(mac.release());
if(auto mac = MessageAuthenticationCode::create("HMAC(" + spec.arg(0) + ")"))
return new SP800_108_Feedback(mac.release());
return nullptr;
}
size_t SP800_108_Feedback::kdf(byte key[], size_t key_len,
const byte secret[], size_t secret_len,
const byte salt[], size_t salt_len,
const byte label[], size_t label_len) const
{
const std::size_t prf_len = m_prf->output_length();
const std::size_t iv_len = (salt_len >= prf_len ? prf_len : 0);
const byte delim = 0;
byte *p = key;
uint32_t counter = 1;
uint32_t length = key_len * 8;
byte be_len[4] = { 0 };
secure_vector< byte > prev(salt, salt + iv_len);
secure_vector< byte > ctx(salt + iv_len, salt + salt_len);
store_be(length, be_len);
m_prf->set_key(secret, secret_len);
while(p < key + key_len && counter != 0)
{
const std::size_t to_copy = std::min< std::size_t >(key + key_len - p, prf_len);
byte be_cnt[4] = { 0 };
store_be(counter, be_cnt);
m_prf->update(prev);
m_prf->update(be_cnt,4);
m_prf->update(label,label_len);
m_prf->update(delim);
m_prf->update(ctx);
m_prf->update(be_len,4);
m_prf->final(prev);
std::copy(prev.begin(), prev.begin() + to_copy, p);
++counter;
if (counter == 0)
throw Invalid_Argument("Can't process more than 4GB");
p += to_copy;
}
return key_len;
}
SP800_108_Pipeline* SP800_108_Pipeline::make(const Spec& spec)
{
if(auto mac = MessageAuthenticationCode::create(spec.arg(0)))
return new SP800_108_Pipeline(mac.release());
if(auto mac = MessageAuthenticationCode::create("HMAC(" + spec.arg(0) + ")"))
return new SP800_108_Pipeline(mac.release());
return nullptr;
}
size_t SP800_108_Pipeline::kdf(byte key[], size_t key_len,
const byte secret[], size_t secret_len,
const byte salt[], size_t salt_len,
const byte label[], size_t label_len) const
{
const std::size_t prf_len = m_prf->output_length();
const byte delim = 0;
byte *p = key;
uint32_t counter = 1;
uint32_t length = key_len * 8;
byte be_len[4] = { 0 };
secure_vector<byte> ai, ki;
store_be(length, be_len);
m_prf->set_key(secret,secret_len);
// A(0)
std::copy(label,label + label_len,std::back_inserter(ai));
ai.emplace_back(delim);
std::copy(salt,salt + salt_len,std::back_inserter(ai));
std::copy(be_len,be_len + 4,std::back_inserter(ai));
while(p < key + key_len && counter != 0)
{
// A(i)
m_prf->update(ai);
m_prf->final(ai);
// K(i)
const std::size_t to_copy = std::min< std::size_t >(key + key_len - p, prf_len);
byte be_cnt[4] = { 0 };
store_be(counter, be_cnt);
m_prf->update(ai);
m_prf->update(be_cnt,4);
m_prf->update(label, label_len);
m_prf->update(delim);
m_prf->update(salt, salt_len);
m_prf->update(be_len,4);
m_prf->final(ki);
std::copy(ki.begin(), ki.begin() + to_copy, p);
++counter;
if (counter == 0)
throw Invalid_Argument("Can't process more than 4GB");
p += to_copy;
}
return key_len;
}
}
|