1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/*
* SHA-160
* (C) 1999-2008,2011 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/sha160.h>
#include <botan/cpuid.h>
namespace Botan {
std::unique_ptr<HashFunction> SHA_160::copy_state() const
{
return std::unique_ptr<HashFunction>(new SHA_160(*this));
}
namespace SHA1_F {
namespace {
/*
* SHA-160 F1 Function
*/
inline void F1(uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, uint32_t msg)
{
E += (D ^ (B & (C ^ D))) + msg + 0x5A827999 + rotl<5>(A);
B = rotl<30>(B);
}
/*
* SHA-160 F2 Function
*/
inline void F2(uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, uint32_t msg)
{
E += (B ^ C ^ D) + msg + 0x6ED9EBA1 + rotl<5>(A);
B = rotl<30>(B);
}
/*
* SHA-160 F3 Function
*/
inline void F3(uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, uint32_t msg)
{
E += ((B & C) | ((B | C) & D)) + msg + 0x8F1BBCDC + rotl<5>(A);
B = rotl<30>(B);
}
/*
* SHA-160 F4 Function
*/
inline void F4(uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, uint32_t msg)
{
E += (B ^ C ^ D) + msg + 0xCA62C1D6 + rotl<5>(A);
B = rotl<30>(B);
}
}
}
/*
* SHA-160 Compression Function
*/
void SHA_160::compress_n(const uint8_t input[], size_t blocks)
{
using namespace SHA1_F;
#if defined(BOTAN_HAS_SHA1_X86_SHA_NI)
if(CPUID::has_intel_sha())
{
return sha1_compress_x86(m_digest, input, blocks);
}
#endif
#if defined(BOTAN_HAS_SHA1_ARMV8)
if(CPUID::has_arm_sha1())
{
return sha1_armv8_compress_n(m_digest, input, blocks);
}
#endif
#if defined(BOTAN_HAS_SHA1_SSE2)
if(CPUID::has_sse2())
{
return sse2_compress_n(m_digest, input, blocks);
}
#endif
uint32_t A = m_digest[0], B = m_digest[1], C = m_digest[2],
D = m_digest[3], E = m_digest[4];
m_W.resize(80);
for(size_t i = 0; i != blocks; ++i)
{
load_be(m_W.data(), input, 16);
for(size_t j = 16; j != 80; j += 8)
{
m_W[j ] = rotl<1>(m_W[j-3] ^ m_W[j-8] ^ m_W[j-14] ^ m_W[j-16]);
m_W[j+1] = rotl<1>(m_W[j-2] ^ m_W[j-7] ^ m_W[j-13] ^ m_W[j-15]);
m_W[j+2] = rotl<1>(m_W[j-1] ^ m_W[j-6] ^ m_W[j-12] ^ m_W[j-14]);
m_W[j+3] = rotl<1>(m_W[j ] ^ m_W[j-5] ^ m_W[j-11] ^ m_W[j-13]);
m_W[j+4] = rotl<1>(m_W[j+1] ^ m_W[j-4] ^ m_W[j-10] ^ m_W[j-12]);
m_W[j+5] = rotl<1>(m_W[j+2] ^ m_W[j-3] ^ m_W[j- 9] ^ m_W[j-11]);
m_W[j+6] = rotl<1>(m_W[j+3] ^ m_W[j-2] ^ m_W[j- 8] ^ m_W[j-10]);
m_W[j+7] = rotl<1>(m_W[j+4] ^ m_W[j-1] ^ m_W[j- 7] ^ m_W[j- 9]);
}
F1(A, B, C, D, E, m_W[ 0]); F1(E, A, B, C, D, m_W[ 1]);
F1(D, E, A, B, C, m_W[ 2]); F1(C, D, E, A, B, m_W[ 3]);
F1(B, C, D, E, A, m_W[ 4]); F1(A, B, C, D, E, m_W[ 5]);
F1(E, A, B, C, D, m_W[ 6]); F1(D, E, A, B, C, m_W[ 7]);
F1(C, D, E, A, B, m_W[ 8]); F1(B, C, D, E, A, m_W[ 9]);
F1(A, B, C, D, E, m_W[10]); F1(E, A, B, C, D, m_W[11]);
F1(D, E, A, B, C, m_W[12]); F1(C, D, E, A, B, m_W[13]);
F1(B, C, D, E, A, m_W[14]); F1(A, B, C, D, E, m_W[15]);
F1(E, A, B, C, D, m_W[16]); F1(D, E, A, B, C, m_W[17]);
F1(C, D, E, A, B, m_W[18]); F1(B, C, D, E, A, m_W[19]);
F2(A, B, C, D, E, m_W[20]); F2(E, A, B, C, D, m_W[21]);
F2(D, E, A, B, C, m_W[22]); F2(C, D, E, A, B, m_W[23]);
F2(B, C, D, E, A, m_W[24]); F2(A, B, C, D, E, m_W[25]);
F2(E, A, B, C, D, m_W[26]); F2(D, E, A, B, C, m_W[27]);
F2(C, D, E, A, B, m_W[28]); F2(B, C, D, E, A, m_W[29]);
F2(A, B, C, D, E, m_W[30]); F2(E, A, B, C, D, m_W[31]);
F2(D, E, A, B, C, m_W[32]); F2(C, D, E, A, B, m_W[33]);
F2(B, C, D, E, A, m_W[34]); F2(A, B, C, D, E, m_W[35]);
F2(E, A, B, C, D, m_W[36]); F2(D, E, A, B, C, m_W[37]);
F2(C, D, E, A, B, m_W[38]); F2(B, C, D, E, A, m_W[39]);
F3(A, B, C, D, E, m_W[40]); F3(E, A, B, C, D, m_W[41]);
F3(D, E, A, B, C, m_W[42]); F3(C, D, E, A, B, m_W[43]);
F3(B, C, D, E, A, m_W[44]); F3(A, B, C, D, E, m_W[45]);
F3(E, A, B, C, D, m_W[46]); F3(D, E, A, B, C, m_W[47]);
F3(C, D, E, A, B, m_W[48]); F3(B, C, D, E, A, m_W[49]);
F3(A, B, C, D, E, m_W[50]); F3(E, A, B, C, D, m_W[51]);
F3(D, E, A, B, C, m_W[52]); F3(C, D, E, A, B, m_W[53]);
F3(B, C, D, E, A, m_W[54]); F3(A, B, C, D, E, m_W[55]);
F3(E, A, B, C, D, m_W[56]); F3(D, E, A, B, C, m_W[57]);
F3(C, D, E, A, B, m_W[58]); F3(B, C, D, E, A, m_W[59]);
F4(A, B, C, D, E, m_W[60]); F4(E, A, B, C, D, m_W[61]);
F4(D, E, A, B, C, m_W[62]); F4(C, D, E, A, B, m_W[63]);
F4(B, C, D, E, A, m_W[64]); F4(A, B, C, D, E, m_W[65]);
F4(E, A, B, C, D, m_W[66]); F4(D, E, A, B, C, m_W[67]);
F4(C, D, E, A, B, m_W[68]); F4(B, C, D, E, A, m_W[69]);
F4(A, B, C, D, E, m_W[70]); F4(E, A, B, C, D, m_W[71]);
F4(D, E, A, B, C, m_W[72]); F4(C, D, E, A, B, m_W[73]);
F4(B, C, D, E, A, m_W[74]); F4(A, B, C, D, E, m_W[75]);
F4(E, A, B, C, D, m_W[76]); F4(D, E, A, B, C, m_W[77]);
F4(C, D, E, A, B, m_W[78]); F4(B, C, D, E, A, m_W[79]);
A = (m_digest[0] += A);
B = (m_digest[1] += B);
C = (m_digest[2] += C);
D = (m_digest[3] += D);
E = (m_digest[4] += E);
input += hash_block_size();
}
}
/*
* Copy out the digest
*/
void SHA_160::copy_out(uint8_t output[])
{
copy_out_vec_be(output, output_length(), m_digest);
}
/*
* Clear memory of sensitive data
*/
void SHA_160::clear()
{
MDx_HashFunction::clear();
zeroise(m_W);
m_digest[0] = 0x67452301;
m_digest[1] = 0xEFCDAB89;
m_digest[2] = 0x98BADCFE;
m_digest[3] = 0x10325476;
m_digest[4] = 0xC3D2E1F0;
}
}
|