1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/*
* Blake2b
* (C) 2016 cynecx
* (C) 2017 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/blake2b.h>
#include <botan/exceptn.h>
#include <botan/mem_ops.h>
#include <botan/loadstor.h>
#include <botan/rotate.h>
#include <algorithm>
namespace Botan {
namespace {
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_IVU64COUNT = 8
};
const uint64_t blake2b_IV[BLAKE2B_IVU64COUNT] = {
0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
};
}
Blake2b::Blake2b(size_t output_bits) :
m_output_bits(output_bits),
m_buffer(BLAKE2B_BLOCKBYTES),
m_bufpos(0),
m_H(BLAKE2B_IVU64COUNT)
{
if(output_bits == 0 || output_bits > 512 || output_bits % 8 != 0)
{
throw Invalid_Argument("Bad output bits size for Blake2b");
}
state_init();
}
void Blake2b::state_init()
{
copy_mem(m_H.data(), blake2b_IV, BLAKE2B_IVU64COUNT);
m_H[0] ^= 0x01010000 ^ static_cast<uint8_t>(output_length());
m_T[0] = m_T[1] = 0;
m_F[0] = m_F[1] = 0;
}
namespace {
inline void G(uint64_t& a, uint64_t& b, uint64_t& c, uint64_t& d,
uint64_t M0, uint64_t M1)
{
a = a + b + M0;
d = rotr<32>(d ^ a);
c = c + d;
b = rotr<24>(b ^ c);
a = a + b + M1;
d = rotr<16>(d ^ a);
c = c + d;
b = rotr<63>(b ^ c);
}
template<size_t i0, size_t i1, size_t i2, size_t i3, size_t i4, size_t i5, size_t i6, size_t i7,
size_t i8, size_t i9, size_t iA, size_t iB, size_t iC, size_t iD, size_t iE, size_t iF>
inline void ROUND(uint64_t* v, const uint64_t* M)
{
G(v[ 0], v[ 4], v[ 8], v[12], M[i0], M[i1]);
G(v[ 1], v[ 5], v[ 9], v[13], M[i2], M[i3]);
G(v[ 2], v[ 6], v[10], v[14], M[i4], M[i5]);
G(v[ 3], v[ 7], v[11], v[15], M[i6], M[i7]);
G(v[ 0], v[ 5], v[10], v[15], M[i8], M[i9]);
G(v[ 1], v[ 6], v[11], v[12], M[iA], M[iB]);
G(v[ 2], v[ 7], v[ 8], v[13], M[iC], M[iD]);
G(v[ 3], v[ 4], v[ 9], v[14], M[iE], M[iF]);
}
}
void Blake2b::compress(const uint8_t* input, size_t blocks, uint64_t increment)
{
for(size_t b = 0; b != blocks; ++b)
{
m_T[0] += increment;
if(m_T[0] < increment)
{
m_T[1]++;
}
uint64_t M[16];
uint64_t v[16];
load_le(M, input, 16);
input += BLAKE2B_BLOCKBYTES;
for(size_t i = 0; i < 8; i++)
v[i] = m_H[i];
for(size_t i = 0; i != 8; ++i)
v[i + 8] = blake2b_IV[i];
v[12] ^= m_T[0];
v[13] ^= m_T[1];
v[14] ^= m_F[0];
v[15] ^= m_F[1];
ROUND< 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15>(v, M);
ROUND<14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3>(v, M);
ROUND<11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4>(v, M);
ROUND< 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8>(v, M);
ROUND< 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13>(v, M);
ROUND< 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9>(v, M);
ROUND<12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11>(v, M);
ROUND<13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10>(v, M);
ROUND< 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5>(v, M);
ROUND<10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0>(v, M);
ROUND< 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15>(v, M);
ROUND<14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3>(v, M);
for(size_t i = 0; i < 8; i++)
{
m_H[i] ^= v[i] ^ v[i + 8];
}
}
}
void Blake2b::add_data(const uint8_t input[], size_t length)
{
if(length == 0)
return;
if(m_bufpos > 0)
{
if(m_bufpos < BLAKE2B_BLOCKBYTES)
{
const size_t take = std::min(BLAKE2B_BLOCKBYTES - m_bufpos, length);
copy_mem(&m_buffer[m_bufpos], input, take);
m_bufpos += take;
length -= take;
input += take;
}
if(m_bufpos == m_buffer.size() && length > 0)
{
compress(m_buffer.data(), 1, BLAKE2B_BLOCKBYTES);
m_bufpos = 0;
}
}
if(length > BLAKE2B_BLOCKBYTES)
{
const size_t full_blocks = ((length-1) / BLAKE2B_BLOCKBYTES);
compress(input, full_blocks, BLAKE2B_BLOCKBYTES);
input += full_blocks * BLAKE2B_BLOCKBYTES;
length -= full_blocks * BLAKE2B_BLOCKBYTES;
}
if(length > 0)
{
copy_mem(&m_buffer[m_bufpos], input, length);
m_bufpos += length;
}
}
void Blake2b::final_result(uint8_t output[])
{
if(m_bufpos != BLAKE2B_BLOCKBYTES)
clear_mem(&m_buffer[m_bufpos], BLAKE2B_BLOCKBYTES - m_bufpos);
m_F[0] = 0xFFFFFFFFFFFFFFFF;
compress(m_buffer.data(), 1, m_bufpos);
copy_out_vec_le(output, output_length(), m_H);
clear();
}
std::string Blake2b::name() const
{
return "Blake2b(" + std::to_string(m_output_bits) + ")";
}
HashFunction* Blake2b::clone() const
{
return new Blake2b(m_output_bits);
}
std::unique_ptr<HashFunction> Blake2b::copy_state() const
{
return std::unique_ptr<HashFunction>(new Blake2b(*this));
}
void Blake2b::clear()
{
zeroise(m_H);
zeroise(m_buffer);
m_bufpos = 0;
state_init();
}
}
|