1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/*
* Gather entropy by running various system commands in the hopes that
* some of the output cannot be guessed by a remote attacker.
*
* (C) 1999-2009,2013 Jack Lloyd
* 2012 Markus Wanner
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/unix_procs.h>
#include <botan/parsing.h>
#include <algorithm>
#include <atomic>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
namespace Botan {
namespace {
std::string find_full_path_if_exists(const std::vector<std::string>& trusted_path,
const std::string& proc)
{
for(auto dir : trusted_path)
{
const std::string full_path = dir + "/" + proc;
if(::access(full_path.c_str(), X_OK) == 0)
return full_path;
}
return "";
}
size_t concurrent_processes(size_t user_request)
{
const size_t DEFAULT_CONCURRENT = 2;
const size_t MAX_CONCURRENT = 8;
if(user_request > 0 && user_request < MAX_CONCURRENT)
return user_request;
const long online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
if(online_cpus > 0)
return static_cast<size_t>(online_cpus); // maybe fewer?
return DEFAULT_CONCURRENT;
}
}
/**
* Unix_EntropySource Constructor
*/
Unix_EntropySource::Unix_EntropySource(const std::vector<std::string>& trusted_path,
size_t proc_cnt) :
m_trusted_paths(trusted_path),
m_concurrent(concurrent_processes(proc_cnt))
{
}
void UnixProcessInfo_EntropySource::poll(Entropy_Accumulator& accum)
{
accum.add(::getpid(), 0.0);
accum.add(::getppid(), 0.0);
accum.add(::getuid(), 0.0);
accum.add(::getgid(), 0.0);
accum.add(::getsid(0), 0.0);
accum.add(::getpgrp(), 0.0);
struct ::rusage usage;
::getrusage(RUSAGE_SELF, &usage);
accum.add(usage, 0.0);
}
void Unix_EntropySource::Unix_Process::spawn(const std::vector<std::string>& args)
{
if(args.empty())
throw std::invalid_argument("Cannot spawn process without path");
shutdown();
int pipe[2];
if(::pipe(pipe) != 0)
return;
pid_t pid = ::fork();
if(pid == -1)
{
::close(pipe[0]);
::close(pipe[1]);
}
else if(pid > 0) // in parent
{
m_pid = pid;
m_fd = pipe[0];
::close(pipe[1]);
}
else // in child
{
if(::dup2(pipe[1], STDOUT_FILENO) == -1)
::exit(127);
if(::close(pipe[0]) != 0 || ::close(pipe[1]) != 0)
::exit(127);
if(close(STDERR_FILENO) != 0)
::exit(127);
const char* arg0 = args[0].c_str();
const char* arg1 = (args.size() > 1) ? args[1].c_str() : nullptr;
const char* arg2 = (args.size() > 2) ? args[2].c_str() : nullptr;
const char* arg3 = (args.size() > 3) ? args[3].c_str() : nullptr;
const char* arg4 = (args.size() > 4) ? args[4].c_str() : nullptr;
::execl(arg0, arg0, arg1, arg2, arg3, arg4, NULL);
::exit(127);
}
}
void Unix_EntropySource::Unix_Process::shutdown()
{
if(m_pid == -1)
return;
::close(m_fd);
m_fd = -1;
pid_t reaped = waitpid(m_pid, nullptr, WNOHANG);
if(reaped == 0)
{
/*
* Child is still alive - send it SIGTERM, sleep for a bit and
* try to reap again, if still alive send SIGKILL
*/
kill(m_pid, SIGTERM);
struct ::timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 1000;
select(0, nullptr, nullptr, nullptr, &tv);
reaped = ::waitpid(m_pid, nullptr, WNOHANG);
if(reaped == 0)
{
::kill(m_pid, SIGKILL);
do
reaped = ::waitpid(m_pid, nullptr, 0);
while(reaped == -1);
}
}
m_pid = -1;
}
const std::vector<std::string>& Unix_EntropySource::next_source()
{
const auto& src = m_sources.at(m_sources_idx);
m_sources_idx = (m_sources_idx + 1) % m_sources.size();
return src;
}
void Unix_EntropySource::poll(Entropy_Accumulator& accum)
{
// refuse to run setuid or setgid, or as root
if((getuid() != geteuid()) || (getgid() != getegid()) || (geteuid() == 0))
return;
std::lock_guard<std::mutex> lock(m_mutex);
if(m_sources.empty())
{
auto sources = get_default_sources();
for(auto src : sources)
{
const std::string path = find_full_path_if_exists(m_trusted_paths, src[0]);
if(path != "")
{
src[0] = path;
m_sources.push_back(src);
}
}
}
if(m_sources.empty())
return; // still empty, really nothing to try
const size_t MS_WAIT_TIME = 32;
const double ENTROPY_ESTIMATE = 1.0 / 1024;
m_buf.resize(4096);
while(!accum.polling_finished())
{
while(m_procs.size() < m_concurrent)
m_procs.emplace_back(Unix_Process(next_source()));
fd_set read_set;
FD_ZERO(&read_set);
std::vector<int> fds;
for(auto& proc : m_procs)
{
int fd = proc.fd();
if(fd > 0)
{
fds.push_back(fd);
FD_SET(fd, &read_set);
}
}
if(fds.empty())
break;
const int max_fd = *std::max_element(fds.begin(), fds.end());
struct ::timeval timeout;
timeout.tv_sec = (MS_WAIT_TIME / 1000);
timeout.tv_usec = (MS_WAIT_TIME % 1000) * 1000;
if(::select(max_fd + 1, &read_set, nullptr, nullptr, &timeout) < 0)
return; // or continue?
for(auto& proc : m_procs)
{
int fd = proc.fd();
if(FD_ISSET(fd, &read_set))
{
const ssize_t got = ::read(fd, &m_buf[0], m_buf.size());
if(got > 0)
accum.add(&m_buf[0], got, ENTROPY_ESTIMATE);
else
proc.spawn(next_source());
}
}
}
}
}
|