1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* XTEA
* (C) 1999-2009,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/xtea.h>
#include <botan/loadstor.h>
namespace Botan {
/*
* XTEA Encryption
*/
void XTEA::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
const u32bit* EK = &m_EK[0];
const size_t blocks4 = blocks / 4;
const size_t blocks_left = blocks % 4;
BOTAN_PARALLEL_FOR(size_t i = 0; i < blocks4; i++)
{
u32bit L0, R0, L1, R1, L2, R2, L3, R3;
load_be(in + 4*BLOCK_SIZE*i, L0, R0, L1, R1, L2, R2, L3, R3);
for(size_t r = 0; r != 32; ++r)
{
L0 += (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[2*r];
L1 += (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[2*r];
L2 += (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[2*r];
L3 += (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[2*r];
R0 += (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[2*r+1];
R1 += (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[2*r+1];
R2 += (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[2*r+1];
R3 += (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[2*r+1];
}
store_be(out + 4*BLOCK_SIZE*i, L0, R0, L1, R1, L2, R2, L3, R3);
}
BOTAN_PARALLEL_FOR(size_t i = 0; i < blocks_left; ++i)
{
u32bit L, R;
load_be(in + BLOCK_SIZE*(4*blocks4+i), L, R);
for(size_t r = 0; r != 32; ++r)
{
L += (((R << 4) ^ (R >> 5)) + R) ^ EK[2*r];
R += (((L << 4) ^ (L >> 5)) + L) ^ EK[2*r+1];
}
store_be(out + BLOCK_SIZE*(4*blocks4+i), L, R);
}
}
/*
* XTEA Decryption
*/
void XTEA::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
const u32bit* EK = &m_EK[0];
const size_t blocks4 = blocks / 4;
const size_t blocks_left = blocks % 4;
BOTAN_PARALLEL_FOR(size_t i = 0; i < blocks4; i++)
{
u32bit L0, R0, L1, R1, L2, R2, L3, R3;
load_be(in + 4*BLOCK_SIZE*i, L0, R0, L1, R1, L2, R2, L3, R3);
for(size_t r = 0; r != 32; ++r)
{
R0 -= (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[63 - 2*r];
R1 -= (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[63 - 2*r];
R2 -= (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[63 - 2*r];
R3 -= (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[63 - 2*r];
L0 -= (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[62 - 2*r];
L1 -= (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[62 - 2*r];
L2 -= (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[62 - 2*r];
L3 -= (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[62 - 2*r];
}
store_be(out + 4*BLOCK_SIZE*i, L0, R0, L1, R1, L2, R2, L3, R3);
}
BOTAN_PARALLEL_FOR(size_t i = 0; i < blocks_left; ++i)
{
u32bit L, R;
load_be(in + BLOCK_SIZE*(4*blocks4+i), L, R);
for(size_t r = 0; r != 32; ++r)
{
R -= (((L << 4) ^ (L >> 5)) + L) ^ m_EK[63 - 2*r];
L -= (((R << 4) ^ (R >> 5)) + R) ^ m_EK[62 - 2*r];
}
store_be(out + BLOCK_SIZE*(4*blocks4+i), L, R);
}
}
/*
* XTEA Key Schedule
*/
void XTEA::key_schedule(const byte key[], size_t)
{
m_EK.resize(64);
secure_vector<u32bit> UK(4);
for(size_t i = 0; i != 4; ++i)
UK[i] = load_be<u32bit>(key, i);
u32bit D = 0;
for(size_t i = 0; i != 64; i += 2)
{
m_EK[i ] = D + UK[D % 4];
D += 0x9E3779B9;
m_EK[i+1] = D + UK[(D >> 11) % 4];
}
}
void XTEA::clear()
{
zap(m_EK);
}
}
|