1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
/*
* AES using SSSE3
* (C) 2010,2016 Jack Lloyd
*
* This is more or less a direct translation of public domain x86-64
* assembly written by Mike Hamburg, described in "Accelerating AES
* with Vector Permute Instructions" (CHES 2009). His original code is
* available at http://crypto.stanford.edu/vpaes/
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/aes_ssse3.h>
#include <botan/cpuid.h>
#include <botan/internal/ct_utils.h>
#include <tmmintrin.h>
namespace Botan {
namespace {
const __m128i low_nibs = _mm_set1_epi8(0x0F);
const __m128i k_ipt1 = _mm_set_epi32(
0xCABAE090, 0x52227808, 0xC2B2E898, 0x5A2A7000);
const __m128i k_ipt2 = _mm_set_epi32(
0xCD80B1FC, 0xB0FDCC81, 0x4C01307D, 0x317C4D00);
const __m128i k_inv1 = _mm_set_epi32(
0x04070309, 0x0A0B0C02, 0x0E05060F, 0x0D080180);
const __m128i k_inv2 = _mm_set_epi32(
0x030D0E0C, 0x02050809, 0x01040A06, 0x0F0B0780);
const __m128i sb1u = _mm_set_epi32(
0xA5DF7A6E, 0x142AF544, 0xB19BE18F, 0xCB503E00);
const __m128i sb1t = _mm_set_epi32(
0x3BF7CCC1, 0x0D2ED9EF, 0x3618D415, 0xFAE22300);
const __m128i mc_forward[4] = {
_mm_set_epi32(0x0C0F0E0D, 0x080B0A09, 0x04070605, 0x00030201),
_mm_set_epi32(0x00030201, 0x0C0F0E0D, 0x080B0A09, 0x04070605),
_mm_set_epi32(0x04070605, 0x00030201, 0x0C0F0E0D, 0x080B0A09),
_mm_set_epi32(0x080B0A09, 0x04070605, 0x00030201, 0x0C0F0E0D)
};
const __m128i sr[4] = {
_mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100),
_mm_set_epi32(0x0B06010C, 0x07020D08, 0x030E0904, 0x0F0A0500),
_mm_set_epi32(0x070E050C, 0x030A0108, 0x0F060D04, 0x0B020900),
_mm_set_epi32(0x0306090C, 0x0F020508, 0x0B0E0104, 0x070A0D00),
};
#define mm_xor3(x, y, z) _mm_xor_si128(x, _mm_xor_si128(y, z))
__m128i aes_schedule_transform(__m128i input,
__m128i table_1,
__m128i table_2)
{
__m128i i_1 = _mm_and_si128(low_nibs, input);
__m128i i_2 = _mm_srli_epi32(_mm_andnot_si128(low_nibs, input), 4);
input = _mm_and_si128(low_nibs, input);
return _mm_xor_si128(
_mm_shuffle_epi8(table_1, i_1),
_mm_shuffle_epi8(table_2, i_2));
}
__m128i aes_schedule_mangle(__m128i k, byte round_no)
{
__m128i t = _mm_shuffle_epi8(_mm_xor_si128(k, _mm_set1_epi8(0x5B)),
mc_forward[0]);
__m128i t2 = t;
t = _mm_shuffle_epi8(t, mc_forward[0]);
t2 = mm_xor3(t2, t, _mm_shuffle_epi8(t, mc_forward[0]));
return _mm_shuffle_epi8(t2, sr[round_no % 4]);
}
__m128i aes_schedule_192_smear(__m128i x, __m128i y)
{
return mm_xor3(y,
_mm_shuffle_epi32(x, 0xFE),
_mm_shuffle_epi32(y, 0x80));
}
__m128i aes_schedule_mangle_dec(__m128i k, byte round_no)
{
const __m128i dsk[8] = {
_mm_set_epi32(0x4AED9334, 0x82255BFC, 0xB6116FC8, 0x7ED9A700),
_mm_set_epi32(0x8BB89FAC, 0xE9DAFDCE, 0x45765162, 0x27143300),
_mm_set_epi32(0x4622EE8A, 0xADC90561, 0x27438FEB, 0xCCA86400),
_mm_set_epi32(0x73AEE13C, 0xBD602FF2, 0x815C13CE, 0x4F92DD00),
_mm_set_epi32(0xF83F3EF9, 0xFA3D3CFB, 0x03C4C502, 0x01C6C700),
_mm_set_epi32(0xA5526A9D, 0x7384BC4B, 0xEE1921D6, 0x38CFF700),
_mm_set_epi32(0xA080D3F3, 0x10306343, 0xE3C390B0, 0x53732000),
_mm_set_epi32(0x2F45AEC4, 0x8CE60D67, 0xA0CA214B, 0x036982E8)
};
__m128i t = aes_schedule_transform(k, dsk[0], dsk[1]);
__m128i output = _mm_shuffle_epi8(t, mc_forward[0]);
t = aes_schedule_transform(t, dsk[2], dsk[3]);
output = _mm_shuffle_epi8(_mm_xor_si128(t, output), mc_forward[0]);
t = aes_schedule_transform(t, dsk[4], dsk[5]);
output = _mm_shuffle_epi8(_mm_xor_si128(t, output), mc_forward[0]);
t = aes_schedule_transform(t, dsk[6], dsk[7]);
output = _mm_shuffle_epi8(_mm_xor_si128(t, output), mc_forward[0]);
return _mm_shuffle_epi8(output, sr[round_no % 4]);
}
__m128i aes_schedule_mangle_last(__m128i k, byte round_no)
{
const __m128i out_tr1 = _mm_set_epi32(
0xF7974121, 0xDEBE6808, 0xFF9F4929, 0xD6B66000);
const __m128i out_tr2 = _mm_set_epi32(
0xE10D5DB1, 0xB05C0CE0, 0x01EDBD51, 0x50BCEC00);
k = _mm_shuffle_epi8(k, sr[round_no % 4]);
k = _mm_xor_si128(k, _mm_set1_epi8(0x5B));
return aes_schedule_transform(k, out_tr1, out_tr2);
}
__m128i aes_schedule_mangle_last_dec(__m128i k)
{
const __m128i deskew1 = _mm_set_epi32(
0x1DFEB95A, 0x5DBEF91A, 0x07E4A340, 0x47A4E300);
const __m128i deskew2 = _mm_set_epi32(
0x2841C2AB, 0xF49D1E77, 0x5F36B5DC, 0x83EA6900);
k = _mm_xor_si128(k, _mm_set1_epi8(0x5B));
return aes_schedule_transform(k, deskew1, deskew2);
}
__m128i aes_schedule_round(__m128i* rcon, __m128i input1, __m128i input2)
{
if(rcon)
{
input2 = _mm_xor_si128(_mm_alignr_epi8(_mm_setzero_si128(), *rcon, 15),
input2);
*rcon = _mm_alignr_epi8(*rcon, *rcon, 15); // next rcon
input1 = _mm_shuffle_epi32(input1, 0xFF); // rotate
input1 = _mm_alignr_epi8(input1, input1, 1);
}
__m128i smeared = _mm_xor_si128(input2, _mm_slli_si128(input2, 4));
smeared = mm_xor3(smeared, _mm_slli_si128(smeared, 8), _mm_set1_epi8(0x5B));
__m128i t = _mm_srli_epi32(_mm_andnot_si128(low_nibs, input1), 4);
input1 = _mm_and_si128(low_nibs, input1);
__m128i t2 = _mm_shuffle_epi8(k_inv2, input1);
input1 = _mm_xor_si128(input1, t);
__m128i t3 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, t));
__m128i t4 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, input1));
__m128i t5 = _mm_xor_si128(input1, _mm_shuffle_epi8(k_inv1, t3));
__m128i t6 = _mm_xor_si128(t, _mm_shuffle_epi8(k_inv1, t4));
return mm_xor3(_mm_shuffle_epi8(sb1u, t5),
_mm_shuffle_epi8(sb1t, t6),
smeared);
}
__m128i aes_ssse3_encrypt(__m128i B, const __m128i* keys, size_t rounds)
{
const __m128i sb2u = _mm_set_epi32(
0x5EB7E955, 0xBC982FCD, 0xE27A93C6, 0x0B712400);
const __m128i sb2t = _mm_set_epi32(
0xC2A163C8, 0xAB82234A, 0x69EB8840, 0x0AE12900);
const __m128i sbou = _mm_set_epi32(
0x15AABF7A, 0xC502A878, 0xD0D26D17, 0x6FBDC700);
const __m128i sbot = _mm_set_epi32(
0x8E1E90D1, 0x412B35FA, 0xCFE474A5, 0x5FBB6A00);
const __m128i mc_backward[4] = {
_mm_set_epi32(0x0E0D0C0F, 0x0A09080B, 0x06050407, 0x02010003),
_mm_set_epi32(0x0A09080B, 0x06050407, 0x02010003, 0x0E0D0C0F),
_mm_set_epi32(0x06050407, 0x02010003, 0x0E0D0C0F, 0x0A09080B),
_mm_set_epi32(0x02010003, 0x0E0D0C0F, 0x0A09080B, 0x06050407),
};
B = mm_xor3(_mm_shuffle_epi8(k_ipt1, _mm_and_si128(low_nibs, B)),
_mm_shuffle_epi8(k_ipt2,
_mm_srli_epi32(
_mm_andnot_si128(low_nibs, B),
4)),
_mm_loadu_si128(keys));
for(size_t r = 1; ; ++r)
{
const __m128i K = _mm_loadu_si128(keys + r);
__m128i t = _mm_srli_epi32(_mm_andnot_si128(low_nibs, B), 4);
B = _mm_and_si128(low_nibs, B);
__m128i t2 = _mm_shuffle_epi8(k_inv2, B);
B = _mm_xor_si128(B, t);
__m128i t3 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, t));
__m128i t4 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, B));
__m128i t5 = _mm_xor_si128(B, _mm_shuffle_epi8(k_inv1, t3));
__m128i t6 = _mm_xor_si128(t, _mm_shuffle_epi8(k_inv1, t4));
if(r == rounds)
{
B = _mm_shuffle_epi8(
mm_xor3(_mm_shuffle_epi8(sbou, t5),
_mm_shuffle_epi8(sbot, t6),
K),
sr[r % 4]);
return B;
}
__m128i t7 = mm_xor3(_mm_shuffle_epi8(sb1t, t6),
_mm_shuffle_epi8(sb1u, t5),
K);
__m128i t8 = mm_xor3(_mm_shuffle_epi8(sb2t, t6),
_mm_shuffle_epi8(sb2u, t5),
_mm_shuffle_epi8(t7, mc_forward[r % 4]));
B = mm_xor3(_mm_shuffle_epi8(t8, mc_forward[r % 4]),
_mm_shuffle_epi8(t7, mc_backward[r % 4]),
t8);
}
}
__m128i aes_ssse3_decrypt(__m128i B, const __m128i* keys, size_t rounds)
{
const __m128i k_dipt1 = _mm_set_epi32(
0x154A411E, 0x114E451A, 0x0F505B04, 0x0B545F00);
const __m128i k_dipt2 = _mm_set_epi32(
0x12771772, 0xF491F194, 0x86E383E6, 0x60056500);
const __m128i sb9u = _mm_set_epi32(
0xCAD51F50, 0x4F994CC9, 0x851C0353, 0x9A86D600);
const __m128i sb9t = _mm_set_epi32(
0x725E2C9E, 0xB2FBA565, 0xC03B1789, 0xECD74900);
const __m128i sbeu = _mm_set_epi32(
0x22426004, 0x64B4F6B0, 0x46F29296, 0x26D4D000);
const __m128i sbet = _mm_set_epi32(
0x9467F36B, 0x98593E32, 0x0C55A6CD, 0xFFAAC100);
const __m128i sbdu = _mm_set_epi32(
0xF56E9B13, 0x882A4439, 0x7D57CCDF, 0xE6B1A200);
const __m128i sbdt = _mm_set_epi32(
0x2931180D, 0x15DEEFD3, 0x3CE2FAF7, 0x24C6CB00);
const __m128i sbbu = _mm_set_epi32(
0x602646F6, 0xB0F2D404, 0xD0226492, 0x96B44200);
const __m128i sbbt = _mm_set_epi32(
0xF3FF0C3E, 0x3255AA6B, 0xC19498A6, 0xCD596700);
__m128i mc = mc_forward[3];
__m128i t =
_mm_shuffle_epi8(k_dipt2,
_mm_srli_epi32(
_mm_andnot_si128(low_nibs, B),
4));
B = mm_xor3(t, _mm_loadu_si128(keys),
_mm_shuffle_epi8(k_dipt1, _mm_and_si128(B, low_nibs)));
for(size_t r = 1; ; ++r)
{
const __m128i K = _mm_loadu_si128(keys + r);
t = _mm_srli_epi32(_mm_andnot_si128(low_nibs, B), 4);
B = _mm_and_si128(low_nibs, B);
__m128i t2 = _mm_shuffle_epi8(k_inv2, B);
B = _mm_xor_si128(B, t);
__m128i t3 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, t));
__m128i t4 = _mm_xor_si128(t2, _mm_shuffle_epi8(k_inv1, B));
__m128i t5 = _mm_xor_si128(B, _mm_shuffle_epi8(k_inv1, t3));
__m128i t6 = _mm_xor_si128(t, _mm_shuffle_epi8(k_inv1, t4));
if(r == rounds)
{
const __m128i sbou = _mm_set_epi32(
0xC7AA6DB9, 0xD4943E2D, 0x1387EA53, 0x7EF94000);
const __m128i sbot = _mm_set_epi32(
0xCA4B8159, 0xD8C58E9C, 0x12D7560F, 0x93441D00);
__m128i x = _mm_shuffle_epi8(sbou, t5);
__m128i y = _mm_shuffle_epi8(sbot, t6);
x = _mm_xor_si128(x, K);
x = _mm_xor_si128(x, y);
const u32bit which_sr = ((((rounds - 1) << 4) ^ 48) & 48) / 16;
return _mm_shuffle_epi8(x, sr[which_sr]);
}
__m128i t8 = _mm_xor_si128(_mm_shuffle_epi8(sb9t, t6),
_mm_xor_si128(_mm_shuffle_epi8(sb9u, t5), K));
__m128i t9 = mm_xor3(_mm_shuffle_epi8(t8, mc),
_mm_shuffle_epi8(sbdu, t5),
_mm_shuffle_epi8(sbdt, t6));
__m128i t12 = _mm_xor_si128(
_mm_xor_si128(
_mm_shuffle_epi8(t9, mc),
_mm_shuffle_epi8(sbbu, t5)),
_mm_shuffle_epi8(sbbt, t6));
B = _mm_xor_si128(_mm_xor_si128(_mm_shuffle_epi8(t12, mc),
_mm_shuffle_epi8(sbeu, t5)),
_mm_shuffle_epi8(sbet, t6));
mc = _mm_alignr_epi8(mc, mc, 12);
}
}
}
/*
* AES-128 Encryption
*/
void AES_128_SSSE3::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_EK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_encrypt(B, keys, 10));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-128 Decryption
*/
void AES_128_SSSE3::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_DK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_decrypt(B, keys, 10));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-128 Key Schedule
*/
void AES_128_SSSE3::key_schedule(const byte keyb[], size_t)
{
__m128i rcon = _mm_set_epi32(0x702A9808, 0x4D7C7D81,
0x1F8391B9, 0xAF9DEEB6);
__m128i key = _mm_loadu_si128(reinterpret_cast<const __m128i*>(keyb));
m_EK.resize(11*4);
m_DK.resize(11*4);
__m128i* EK_mm = reinterpret_cast<__m128i*>(m_EK.data());
__m128i* DK_mm = reinterpret_cast<__m128i*>(m_DK.data());
_mm_storeu_si128(DK_mm + 10, _mm_shuffle_epi8(key, sr[2]));
key = aes_schedule_transform(key, k_ipt1, k_ipt2);
_mm_storeu_si128(EK_mm, key);
for(size_t i = 1; i != 10; ++i)
{
key = aes_schedule_round(&rcon, key, key);
_mm_storeu_si128(EK_mm + i,
aes_schedule_mangle(key, (12-i) % 4));
_mm_storeu_si128(DK_mm + (10-i),
aes_schedule_mangle_dec(key, (10-i) % 4));
}
key = aes_schedule_round(&rcon, key, key);
_mm_storeu_si128(EK_mm + 10, aes_schedule_mangle_last(key, 2));
_mm_storeu_si128(DK_mm, aes_schedule_mangle_last_dec(key));
}
void AES_128_SSSE3::clear()
{
zap(m_EK);
zap(m_DK);
}
/*
* AES-192 Encryption
*/
void AES_192_SSSE3::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_EK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_encrypt(B, keys, 12));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-192 Decryption
*/
void AES_192_SSSE3::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_DK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_decrypt(B, keys, 12));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-192 Key Schedule
*/
void AES_192_SSSE3::key_schedule(const byte keyb[], size_t)
{
__m128i rcon = _mm_set_epi32(0x702A9808, 0x4D7C7D81,
0x1F8391B9, 0xAF9DEEB6);
m_EK.resize(13*4);
m_DK.resize(13*4);
__m128i* EK_mm = reinterpret_cast<__m128i*>(m_EK.data());
__m128i* DK_mm = reinterpret_cast<__m128i*>(m_DK.data());
__m128i key1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(keyb));
__m128i key2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((keyb + 8)));
_mm_storeu_si128(DK_mm + 12, _mm_shuffle_epi8(key1, sr[0]));
key1 = aes_schedule_transform(key1, k_ipt1, k_ipt2);
key2 = aes_schedule_transform(key2, k_ipt1, k_ipt2);
_mm_storeu_si128(EK_mm + 0, key1);
// key2 with 8 high bytes masked off
__m128i t = _mm_slli_si128(_mm_srli_si128(key2, 8), 8);
for(size_t i = 0; i != 4; ++i)
{
key2 = aes_schedule_round(&rcon, key2, key1);
_mm_storeu_si128(EK_mm + 3*i+1,
aes_schedule_mangle(_mm_alignr_epi8(key2, t, 8), (i+3)%4));
_mm_storeu_si128(DK_mm + 11-3*i,
aes_schedule_mangle_dec(_mm_alignr_epi8(key2, t, 8), (i+3)%4));
t = aes_schedule_192_smear(key2, t);
_mm_storeu_si128(EK_mm + 3*i+2,
aes_schedule_mangle(t, (i+2)%4));
_mm_storeu_si128(DK_mm + 10-3*i,
aes_schedule_mangle_dec(t, (i+2)%4));
key2 = aes_schedule_round(&rcon, t, key2);
if(i == 3)
{
_mm_storeu_si128(EK_mm + 3*i+3,
aes_schedule_mangle_last(key2, (i+1)%4));
_mm_storeu_si128(DK_mm + 9-3*i,
aes_schedule_mangle_last_dec(key2));
}
else
{
_mm_storeu_si128(EK_mm + 3*i+3,
aes_schedule_mangle(key2, (i+1)%4));
_mm_storeu_si128(DK_mm + 9-3*i,
aes_schedule_mangle_dec(key2, (i+1)%4));
}
key1 = key2;
key2 = aes_schedule_192_smear(key2,
_mm_slli_si128(_mm_srli_si128(t, 8), 8));
t = _mm_slli_si128(_mm_srli_si128(key2, 8), 8);
}
}
void AES_192_SSSE3::clear()
{
zap(m_EK);
zap(m_DK);
}
/*
* AES-256 Encryption
*/
void AES_256_SSSE3::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_EK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_encrypt(B, keys, 14));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-256 Decryption
*/
void AES_256_SSSE3::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
const __m128i* in_mm = reinterpret_cast<const __m128i*>(in);
__m128i* out_mm = reinterpret_cast<__m128i*>(out);
const __m128i* keys = reinterpret_cast<const __m128i*>(m_DK.data());
CT::poison(in, blocks * block_size());
for(size_t i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
_mm_storeu_si128(out_mm + i, aes_ssse3_decrypt(B, keys, 14));
}
CT::unpoison(in, blocks * block_size());
CT::unpoison(out, blocks * block_size());
}
/*
* AES-256 Key Schedule
*/
void AES_256_SSSE3::key_schedule(const byte keyb[], size_t)
{
__m128i rcon = _mm_set_epi32(0x702A9808, 0x4D7C7D81,
0x1F8391B9, 0xAF9DEEB6);
m_EK.resize(15*4);
m_DK.resize(15*4);
__m128i* EK_mm = reinterpret_cast<__m128i*>(m_EK.data());
__m128i* DK_mm = reinterpret_cast<__m128i*>(m_DK.data());
__m128i key1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(keyb));
__m128i key2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((keyb + 16)));
_mm_storeu_si128(DK_mm + 14, _mm_shuffle_epi8(key1, sr[2]));
key1 = aes_schedule_transform(key1, k_ipt1, k_ipt2);
key2 = aes_schedule_transform(key2, k_ipt1, k_ipt2);
_mm_storeu_si128(EK_mm + 0, key1);
_mm_storeu_si128(EK_mm + 1, aes_schedule_mangle(key2, 3));
_mm_storeu_si128(DK_mm + 13, aes_schedule_mangle_dec(key2, 1));
for(size_t i = 2; i != 14; i += 2)
{
__m128i k_t = key2;
key1 = key2 = aes_schedule_round(&rcon, key2, key1);
_mm_storeu_si128(EK_mm + i, aes_schedule_mangle(key2, i % 4));
_mm_storeu_si128(DK_mm + (14-i), aes_schedule_mangle_dec(key2, (i+2) % 4));
key2 = aes_schedule_round(nullptr, _mm_shuffle_epi32(key2, 0xFF), k_t);
_mm_storeu_si128(EK_mm + i + 1, aes_schedule_mangle(key2, (i - 1) % 4));
_mm_storeu_si128(DK_mm + (13-i), aes_schedule_mangle_dec(key2, (i+1) % 4));
}
key2 = aes_schedule_round(&rcon, key2, key1);
_mm_storeu_si128(EK_mm + 14, aes_schedule_mangle_last(key2, 2));
_mm_storeu_si128(DK_mm + 0, aes_schedule_mangle_last_dec(key2));
}
void AES_256_SSSE3::clear()
{
zap(m_EK);
zap(m_DK);
}
}
|