1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
|
/*
* AES
* (C) 1999-2010,2015 Jack Lloyd
*
* Based on the public domain reference implementation by Paulo Baretto
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/aes.h>
#include <botan/loadstor.h>
#include <botan/cpuid.h>
/*
* This implementation is based on table lookups which are known to be
* vulnerable to timing and cache based side channel attacks. Some
* countermeasures are used which may be helpful in some situations:
*
* - Small tables are used in the first and last rounds.
*
* - The TE and TD tables are computed at runtime to avoid flush+reload
* attacks using clflush. As different processes will not share the
* same underlying table data, an attacker can't manipulate another
* processes cache lines via their shared reference to the library
* read only segment.
*
* - Each cache line of the lookup tables is accessed at the beginning
* of each call to encrypt or decrypt. (See the Z variable below)
*
* If available SSSE3 or AES-NI are used instead of this version, as both
* are faster and immune to side channel attacks.
*
* Some AES cache timing papers for reference:
*
* "Software mitigations to hedge AES against cache-based software side
* channel vulnerabilities" https://eprint.iacr.org/2006/052.pdf
*
* "Cache Games - Bringing Access-Based Cache Attacks on AES to Practice"
* http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper031.pdf
*
* "Cache-Collision Timing Attacks Against AES" Bonneau, Mironov
* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4753
*/
namespace Botan {
namespace {
const uint8_t SE[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
0xB0, 0x54, 0xBB, 0x16 };
const uint8_t SD[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0C, 0x7D };
inline uint8_t xtime(uint8_t s) { return (s << 1) ^ ((s >> 7) * 0x1B); }
inline uint8_t xtime4(uint8_t s) { return xtime(xtime(s)); }
inline uint8_t xtime8(uint8_t s) { return xtime(xtime(xtime(s))); }
inline uint8_t xtime3(uint8_t s) { return xtime(s) ^ s; }
inline uint8_t xtime9(uint8_t s) { return xtime8(s) ^ s; }
inline uint8_t xtime11(uint8_t s) { return xtime8(s) ^ xtime(s) ^ s; }
inline uint8_t xtime13(uint8_t s) { return xtime8(s) ^ xtime4(s) ^ s; }
inline uint8_t xtime14(uint8_t s) { return xtime8(s) ^ xtime4(s) ^ xtime(s); }
const std::vector<uint32_t>& AES_TE()
{
auto compute_TE = []() -> std::vector<uint32_t> {
std::vector<uint32_t> TE(1024);
for(size_t i = 0; i != 256; ++i)
{
const uint8_t s = SE[i];
const uint32_t x = make_uint32(xtime(s), s, s, xtime3(s));
TE[i] = x;
TE[i+256] = rotate_right(x, 8);
TE[i+512] = rotate_right(x, 16);
TE[i+768] = rotate_right(x, 24);
}
return TE;
};
static const std::vector<uint32_t> TE = compute_TE();
return TE;
}
const std::vector<uint32_t>& AES_TD()
{
auto compute_TD = []() -> std::vector<uint32_t> {
std::vector<uint32_t> TD(1024);
for(size_t i = 0; i != 256; ++i)
{
const uint8_t s = SD[i];
const uint32_t x = make_uint32(xtime14(s), xtime9(s), xtime13(s), xtime11(s));
TD[i] = x;
TD[i+256] = rotate_right(x, 8);
TD[i+512] = rotate_right(x, 16);
TD[i+768] = rotate_right(x, 24);
}
return TD;
};
static const std::vector<uint32_t> TD = compute_TD();
return TD;
}
/*
* AES Encryption
*/
void aes_encrypt_n(const uint8_t in[], uint8_t out[],
size_t blocks,
const secure_vector<uint32_t>& EK,
const secure_vector<uint8_t>& ME)
{
BOTAN_ASSERT(EK.size() && ME.size() == 16, "Key was set");
const size_t cache_line_size = CPUID::cache_line_size();
const std::vector<uint32_t>& TE = AES_TE();
// Hit every cache line of TE
uint32_t Z = 0;
for(size_t i = 0; i < TE.size(); i += cache_line_size / sizeof(uint32_t))
{
Z |= TE[i];
}
Z &= TE[82]; // this is zero, which hopefully the compiler cannot deduce
for(size_t i = 0; i < blocks; ++i)
{
uint32_t T0, T1, T2, T3;
load_be(in + 16*i, T0, T1, T2, T3);
T0 ^= EK[0];
T1 ^= EK[1];
T2 ^= EK[2];
T3 ^= EK[3];
T0 ^= Z;
/* Use only the first 256 entries of the TE table and do the
* rotations directly in the code. This reduces the number of
* cache lines potentially used in the first round from 64 to 16
* (assuming a typical 64 byte cache line), which makes timing
* attacks a little harder; the first round is particularly
* vulnerable.
*/
uint32_t B0 = TE[get_byte(0, T0)] ^
rotate_right(TE[get_byte(1, T1)], 8) ^
rotate_right(TE[get_byte(2, T2)], 16) ^
rotate_right(TE[get_byte(3, T3)], 24) ^ EK[4];
uint32_t B1 = TE[get_byte(0, T1)] ^
rotate_right(TE[get_byte(1, T2)], 8) ^
rotate_right(TE[get_byte(2, T3)], 16) ^
rotate_right(TE[get_byte(3, T0)], 24) ^ EK[5];
uint32_t B2 = TE[get_byte(0, T2)] ^
rotate_right(TE[get_byte(1, T3)], 8) ^
rotate_right(TE[get_byte(2, T0)], 16) ^
rotate_right(TE[get_byte(3, T1)], 24) ^ EK[6];
uint32_t B3 = TE[get_byte(0, T3)] ^
rotate_right(TE[get_byte(1, T0)], 8) ^
rotate_right(TE[get_byte(2, T1)], 16) ^
rotate_right(TE[get_byte(3, T2)], 24) ^ EK[7];
for(size_t r = 2*4; r < EK.size(); r += 2*4)
{
T0 = EK[r ] ^ TE[get_byte(0, B0) ] ^ TE[get_byte(1, B1) + 256] ^
TE[get_byte(2, B2) + 512] ^ TE[get_byte(3, B3) + 768];
T1 = EK[r+1] ^ TE[get_byte(0, B1) ] ^ TE[get_byte(1, B2) + 256] ^
TE[get_byte(2, B3) + 512] ^ TE[get_byte(3, B0) + 768];
T2 = EK[r+2] ^ TE[get_byte(0, B2) ] ^ TE[get_byte(1, B3) + 256] ^
TE[get_byte(2, B0) + 512] ^ TE[get_byte(3, B1) + 768];
T3 = EK[r+3] ^ TE[get_byte(0, B3) ] ^ TE[get_byte(1, B0) + 256] ^
TE[get_byte(2, B1) + 512] ^ TE[get_byte(3, B2) + 768];
B0 = EK[r+4] ^ TE[get_byte(0, T0) ] ^ TE[get_byte(1, T1) + 256] ^
TE[get_byte(2, T2) + 512] ^ TE[get_byte(3, T3) + 768];
B1 = EK[r+5] ^ TE[get_byte(0, T1) ] ^ TE[get_byte(1, T2) + 256] ^
TE[get_byte(2, T3) + 512] ^ TE[get_byte(3, T0) + 768];
B2 = EK[r+6] ^ TE[get_byte(0, T2) ] ^ TE[get_byte(1, T3) + 256] ^
TE[get_byte(2, T0) + 512] ^ TE[get_byte(3, T1) + 768];
B3 = EK[r+7] ^ TE[get_byte(0, T3) ] ^ TE[get_byte(1, T0) + 256] ^
TE[get_byte(2, T1) + 512] ^ TE[get_byte(3, T2) + 768];
}
out[16*i+ 0] = SE[get_byte(0, B0)] ^ ME[0];
out[16*i+ 1] = SE[get_byte(1, B1)] ^ ME[1];
out[16*i+ 2] = SE[get_byte(2, B2)] ^ ME[2];
out[16*i+ 3] = SE[get_byte(3, B3)] ^ ME[3];
out[16*i+ 4] = SE[get_byte(0, B1)] ^ ME[4];
out[16*i+ 5] = SE[get_byte(1, B2)] ^ ME[5];
out[16*i+ 6] = SE[get_byte(2, B3)] ^ ME[6];
out[16*i+ 7] = SE[get_byte(3, B0)] ^ ME[7];
out[16*i+ 8] = SE[get_byte(0, B2)] ^ ME[8];
out[16*i+ 9] = SE[get_byte(1, B3)] ^ ME[9];
out[16*i+10] = SE[get_byte(2, B0)] ^ ME[10];
out[16*i+11] = SE[get_byte(3, B1)] ^ ME[11];
out[16*i+12] = SE[get_byte(0, B3)] ^ ME[12];
out[16*i+13] = SE[get_byte(1, B0)] ^ ME[13];
out[16*i+14] = SE[get_byte(2, B1)] ^ ME[14];
out[16*i+15] = SE[get_byte(3, B2)] ^ ME[15];
}
}
/*
* AES Decryption
*/
void aes_decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks,
const secure_vector<uint32_t>& DK,
const secure_vector<uint8_t>& MD)
{
BOTAN_ASSERT(DK.size() && MD.size() == 16, "Key was set");
const size_t cache_line_size = CPUID::cache_line_size();
const std::vector<uint32_t>& TD = AES_TD();
uint32_t Z = 0;
for(size_t i = 0; i < TD.size(); i += cache_line_size / sizeof(uint32_t))
{
Z |= TD[i];
}
Z &= TD[99]; // this is zero, which hopefully the compiler cannot deduce
for(size_t i = 0; i != blocks; ++i)
{
uint32_t T0 = load_be<uint32_t>(in, 0) ^ DK[0];
uint32_t T1 = load_be<uint32_t>(in, 1) ^ DK[1];
uint32_t T2 = load_be<uint32_t>(in, 2) ^ DK[2];
uint32_t T3 = load_be<uint32_t>(in, 3) ^ DK[3];
T0 ^= Z;
uint32_t B0 = TD[get_byte(0, T0)] ^
rotate_right(TD[get_byte(1, T3)], 8) ^
rotate_right(TD[get_byte(2, T2)], 16) ^
rotate_right(TD[get_byte(3, T1)], 24) ^ DK[4];
uint32_t B1 = TD[get_byte(0, T1)] ^
rotate_right(TD[get_byte(1, T0)], 8) ^
rotate_right(TD[get_byte(2, T3)], 16) ^
rotate_right(TD[get_byte(3, T2)], 24) ^ DK[5];
uint32_t B2 = TD[get_byte(0, T2)] ^
rotate_right(TD[get_byte(1, T1)], 8) ^
rotate_right(TD[get_byte(2, T0)], 16) ^
rotate_right(TD[get_byte(3, T3)], 24) ^ DK[6];
uint32_t B3 = TD[get_byte(0, T3)] ^
rotate_right(TD[get_byte(1, T2)], 8) ^
rotate_right(TD[get_byte(2, T1)], 16) ^
rotate_right(TD[get_byte(3, T0)], 24) ^ DK[7];
for(size_t r = 2*4; r < DK.size(); r += 2*4)
{
T0 = DK[r ] ^ TD[get_byte(0, B0) ] ^ TD[get_byte(1, B3) + 256] ^
TD[get_byte(2, B2) + 512] ^ TD[get_byte(3, B1) + 768];
T1 = DK[r+1] ^ TD[get_byte(0, B1) ] ^ TD[get_byte(1, B0) + 256] ^
TD[get_byte(2, B3) + 512] ^ TD[get_byte(3, B2) + 768];
T2 = DK[r+2] ^ TD[get_byte(0, B2) ] ^ TD[get_byte(1, B1) + 256] ^
TD[get_byte(2, B0) + 512] ^ TD[get_byte(3, B3) + 768];
T3 = DK[r+3] ^ TD[get_byte(0, B3) ] ^ TD[get_byte(1, B2) + 256] ^
TD[get_byte(2, B1) + 512] ^ TD[get_byte(3, B0) + 768];
B0 = DK[r+4] ^ TD[get_byte(0, T0) ] ^ TD[get_byte(1, T3) + 256] ^
TD[get_byte(2, T2) + 512] ^ TD[get_byte(3, T1) + 768];
B1 = DK[r+5] ^ TD[get_byte(0, T1) ] ^ TD[get_byte(1, T0) + 256] ^
TD[get_byte(2, T3) + 512] ^ TD[get_byte(3, T2) + 768];
B2 = DK[r+6] ^ TD[get_byte(0, T2) ] ^ TD[get_byte(1, T1) + 256] ^
TD[get_byte(2, T0) + 512] ^ TD[get_byte(3, T3) + 768];
B3 = DK[r+7] ^ TD[get_byte(0, T3) ] ^ TD[get_byte(1, T2) + 256] ^
TD[get_byte(2, T1) + 512] ^ TD[get_byte(3, T0) + 768];
}
out[ 0] = SD[get_byte(0, B0)] ^ MD[0];
out[ 1] = SD[get_byte(1, B3)] ^ MD[1];
out[ 2] = SD[get_byte(2, B2)] ^ MD[2];
out[ 3] = SD[get_byte(3, B1)] ^ MD[3];
out[ 4] = SD[get_byte(0, B1)] ^ MD[4];
out[ 5] = SD[get_byte(1, B0)] ^ MD[5];
out[ 6] = SD[get_byte(2, B3)] ^ MD[6];
out[ 7] = SD[get_byte(3, B2)] ^ MD[7];
out[ 8] = SD[get_byte(0, B2)] ^ MD[8];
out[ 9] = SD[get_byte(1, B1)] ^ MD[9];
out[10] = SD[get_byte(2, B0)] ^ MD[10];
out[11] = SD[get_byte(3, B3)] ^ MD[11];
out[12] = SD[get_byte(0, B3)] ^ MD[12];
out[13] = SD[get_byte(1, B2)] ^ MD[13];
out[14] = SD[get_byte(2, B1)] ^ MD[14];
out[15] = SD[get_byte(3, B0)] ^ MD[15];
in += 16;
out += 16;
}
}
void aes_key_schedule(const uint8_t key[], size_t length,
secure_vector<uint32_t>& EK,
secure_vector<uint32_t>& DK,
secure_vector<uint8_t>& ME,
secure_vector<uint8_t>& MD)
{
static const uint32_t RC[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
const size_t rounds = (length / 4) + 6;
secure_vector<uint32_t> XEK(length + 32), XDK(length + 32);
const size_t X = length / 4;
// Make clang-analyzer happy
BOTAN_ASSERT(X == 4 || X == 6 || X == 8, "Valid AES key size");
for(size_t i = 0; i != X; ++i)
XEK[i] = load_be<uint32_t>(key, i);
for(size_t i = X; i < 4*(rounds+1); i += X)
{
XEK[i] = XEK[i-X] ^ RC[(i-X)/X] ^
make_uint32(SE[get_byte(1, XEK[i-1])],
SE[get_byte(2, XEK[i-1])],
SE[get_byte(3, XEK[i-1])],
SE[get_byte(0, XEK[i-1])]);
for(size_t j = 1; j != X; ++j)
{
XEK[i+j] = XEK[i+j-X];
if(X == 8 && j == 4)
XEK[i+j] ^= make_uint32(SE[get_byte(0, XEK[i+j-1])],
SE[get_byte(1, XEK[i+j-1])],
SE[get_byte(2, XEK[i+j-1])],
SE[get_byte(3, XEK[i+j-1])]);
else
XEK[i+j] ^= XEK[i+j-1];
}
}
const std::vector<uint32_t>& TD = AES_TD();
for(size_t i = 0; i != 4*(rounds+1); i += 4)
{
XDK[i ] = XEK[4*rounds-i ];
XDK[i+1] = XEK[4*rounds-i+1];
XDK[i+2] = XEK[4*rounds-i+2];
XDK[i+3] = XEK[4*rounds-i+3];
}
for(size_t i = 4; i != length + 24; ++i)
XDK[i] = TD[SE[get_byte(0, XDK[i])] + 0] ^
TD[SE[get_byte(1, XDK[i])] + 256] ^
TD[SE[get_byte(2, XDK[i])] + 512] ^
TD[SE[get_byte(3, XDK[i])] + 768];
ME.resize(16);
MD.resize(16);
for(size_t i = 0; i != 4; ++i)
{
store_be(XEK[i+4*rounds], &ME[4*i]);
store_be(XEK[i], &MD[4*i]);
}
EK.resize(length + 24);
DK.resize(length + 24);
copy_mem(EK.data(), XEK.data(), EK.size());
copy_mem(DK.data(), XDK.data(), DK.size());
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
// ARM needs the subkeys to be byte reversed
for(size_t i = 0; i != EK.size(); ++i)
EK[i] = reverse_bytes(EK[i]);
for(size_t i = 0; i != DK.size(); ++i)
DK[i] = reverse_bytes(DK[i]);
}
#endif
}
size_t aes_parallelism()
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return 4;
}
#endif
return 1;
}
const char* aes_provider()
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return "aesni";
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return "ssse3";
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return "armv8";
}
#endif
return "base";
}
}
std::string AES_128::provider() const { return aes_provider(); }
std::string AES_192::provider() const { return aes_provider(); }
std::string AES_256::provider() const { return aes_provider(); }
size_t AES_128::parallelism() const { return aes_parallelism(); }
size_t AES_192::parallelism() const { return aes_parallelism(); }
size_t AES_256::parallelism() const { return aes_parallelism(); }
void AES_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_128::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_128::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_192::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_192::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_256::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_SSSE3)
if(CPUID::has_ssse3())
{
return ssse3_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_256::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
}
|