1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
/*
* AES
* (C) 1999-2010,2015 Jack Lloyd
*
* Based on the public domain reference implementation by Paulo Baretto
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/aes.h>
#include <botan/loadstor.h>
#include <botan/cpuid.h>
#include <botan/internal/bit_ops.h>
/*
* This implementation is based on table lookups which are known to be
* vulnerable to timing and cache based side channel attacks. Some
* countermeasures are used which may be helpful in some situations:
*
* - Small tables are used in the first and last rounds.
*
* - The TE and TD tables are computed at runtime to avoid flush+reload
* attacks using clflush. As different processes will not share the
* same underlying table data, an attacker can't manipulate another
* processes cache lines via their shared reference to the library
* read only segment.
*
* - Each cache line of the lookup tables is accessed at the beginning
* of each call to encrypt or decrypt. (See the Z variable below)
*
* If available SSSE3 or AES-NI are used instead of this version, as both
* are faster and immune to side channel attacks.
*
* Some AES cache timing papers for reference:
*
* "Software mitigations to hedge AES against cache-based software side
* channel vulnerabilities" https://eprint.iacr.org/2006/052.pdf
*
* "Cache Games - Bringing Access-Based Cache Attacks on AES to Practice"
* http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper031.pdf
*
* "Cache-Collision Timing Attacks Against AES" Bonneau, Mironov
* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4753
*/
namespace Botan {
namespace {
const byte SE[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
0xB0, 0x54, 0xBB, 0x16 };
const byte SD[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0C, 0x7D };
inline byte xtime(byte s) { return (s << 1) ^ ((s >> 7) * 0x1B); }
inline byte xtime4(byte s) { return xtime(xtime(s)); }
inline byte xtime8(byte s) { return xtime(xtime(xtime(s))); }
inline byte xtime3(byte s) { return xtime(s) ^ s; }
inline byte xtime9(byte s) { return xtime8(s) ^ s; }
inline byte xtime11(byte s) { return xtime8(s) ^ xtime(s) ^ s; }
inline byte xtime13(byte s) { return xtime8(s) ^ xtime4(s) ^ s; }
inline byte xtime14(byte s) { return xtime8(s) ^ xtime4(s) ^ xtime(s); }
const std::vector<u32bit>& AES_TE()
{
auto compute_TE = []() {
std::vector<u32bit> TE(1024);
for(size_t i = 0; i != 256; ++i)
{
const byte s = SE[i];
const u32bit x = make_u32bit(xtime(s), s, s, xtime3(s));
TE[i] = x;
TE[i+256] = rotate_right(x, 8);
TE[i+512] = rotate_right(x, 16);
TE[i+768] = rotate_right(x, 24);
}
return TE;
};
static std::vector<u32bit> TE = compute_TE();
return TE;
}
const std::vector<u32bit>& AES_TD()
{
auto compute_TD = []() {
std::vector<u32bit> TD(1024);
for(size_t i = 0; i != 256; ++i)
{
const byte s = SD[i];
const u32bit x = make_u32bit(xtime14(s), xtime9(s), xtime13(s), xtime11(s));
TD[i] = x;
TD[i+256] = rotate_right(x, 8);
TD[i+512] = rotate_right(x, 16);
TD[i+768] = rotate_right(x, 24);
}
return TD;
};
static std::vector<u32bit> TD = compute_TD();
return TD;
}
/*
* AES Encryption
*/
void aes_encrypt_n(const byte in[], byte out[],
size_t blocks,
const secure_vector<u32bit>& EK,
const secure_vector<byte>& ME)
{
BOTAN_ASSERT(EK.size() && ME.size() == 16, "Key was set");
const size_t cache_line_size = CPUID::cache_line_size();
const std::vector<u32bit>& TE = AES_TE();
// Hit every cache line of TE
u32bit Z = 0;
for(size_t i = 0; i < TE.size(); i += cache_line_size / sizeof(u32bit))
{
Z |= TE[i];
}
Z &= TE[82]; // this is zero, which hopefully the compiler cannot deduce
for(size_t i = 0; i != blocks; ++i)
{
u32bit T0 = load_be<u32bit>(in, 0) ^ EK[0];
u32bit T1 = load_be<u32bit>(in, 1) ^ EK[1];
u32bit T2 = load_be<u32bit>(in, 2) ^ EK[2];
u32bit T3 = load_be<u32bit>(in, 3) ^ EK[3];
T0 ^= Z;
/* Use only the first 256 entries of the TE table and do the
* rotations directly in the code. This reduces the number of
* cache lines potentially used in the first round from 64 to 16
* (assuming a typical 64 byte cache line), which makes timing
* attacks a little harder; the first round is particularly
* vulnerable.
*/
u32bit B0 = TE[get_byte(0, T0)] ^
rotate_right(TE[get_byte(1, T1)], 8) ^
rotate_right(TE[get_byte(2, T2)], 16) ^
rotate_right(TE[get_byte(3, T3)], 24) ^ EK[4];
u32bit B1 = TE[get_byte(0, T1)] ^
rotate_right(TE[get_byte(1, T2)], 8) ^
rotate_right(TE[get_byte(2, T3)], 16) ^
rotate_right(TE[get_byte(3, T0)], 24) ^ EK[5];
u32bit B2 = TE[get_byte(0, T2)] ^
rotate_right(TE[get_byte(1, T3)], 8) ^
rotate_right(TE[get_byte(2, T0)], 16) ^
rotate_right(TE[get_byte(3, T1)], 24) ^ EK[6];
u32bit B3 = TE[get_byte(0, T3)] ^
rotate_right(TE[get_byte(1, T0)], 8) ^
rotate_right(TE[get_byte(2, T1)], 16) ^
rotate_right(TE[get_byte(3, T2)], 24) ^ EK[7];
for(size_t r = 2*4; r < EK.size(); r += 2*4)
{
T0 = EK[r ] ^ TE[get_byte(0, B0) ] ^ TE[get_byte(1, B1) + 256] ^
TE[get_byte(2, B2) + 512] ^ TE[get_byte(3, B3) + 768];
T1 = EK[r+1] ^ TE[get_byte(0, B1) ] ^ TE[get_byte(1, B2) + 256] ^
TE[get_byte(2, B3) + 512] ^ TE[get_byte(3, B0) + 768];
T2 = EK[r+2] ^ TE[get_byte(0, B2) ] ^ TE[get_byte(1, B3) + 256] ^
TE[get_byte(2, B0) + 512] ^ TE[get_byte(3, B1) + 768];
T3 = EK[r+3] ^ TE[get_byte(0, B3) ] ^ TE[get_byte(1, B0) + 256] ^
TE[get_byte(2, B1) + 512] ^ TE[get_byte(3, B2) + 768];
B0 = EK[r+4] ^ TE[get_byte(0, T0) ] ^ TE[get_byte(1, T1) + 256] ^
TE[get_byte(2, T2) + 512] ^ TE[get_byte(3, T3) + 768];
B1 = EK[r+5] ^ TE[get_byte(0, T1) ] ^ TE[get_byte(1, T2) + 256] ^
TE[get_byte(2, T3) + 512] ^ TE[get_byte(3, T0) + 768];
B2 = EK[r+6] ^ TE[get_byte(0, T2) ] ^ TE[get_byte(1, T3) + 256] ^
TE[get_byte(2, T0) + 512] ^ TE[get_byte(3, T1) + 768];
B3 = EK[r+7] ^ TE[get_byte(0, T3) ] ^ TE[get_byte(1, T0) + 256] ^
TE[get_byte(2, T1) + 512] ^ TE[get_byte(3, T2) + 768];
}
out[ 0] = SE[get_byte(0, B0)] ^ ME[0];
out[ 1] = SE[get_byte(1, B1)] ^ ME[1];
out[ 2] = SE[get_byte(2, B2)] ^ ME[2];
out[ 3] = SE[get_byte(3, B3)] ^ ME[3];
out[ 4] = SE[get_byte(0, B1)] ^ ME[4];
out[ 5] = SE[get_byte(1, B2)] ^ ME[5];
out[ 6] = SE[get_byte(2, B3)] ^ ME[6];
out[ 7] = SE[get_byte(3, B0)] ^ ME[7];
out[ 8] = SE[get_byte(0, B2)] ^ ME[8];
out[ 9] = SE[get_byte(1, B3)] ^ ME[9];
out[10] = SE[get_byte(2, B0)] ^ ME[10];
out[11] = SE[get_byte(3, B1)] ^ ME[11];
out[12] = SE[get_byte(0, B3)] ^ ME[12];
out[13] = SE[get_byte(1, B0)] ^ ME[13];
out[14] = SE[get_byte(2, B1)] ^ ME[14];
out[15] = SE[get_byte(3, B2)] ^ ME[15];
in += 16;
out += 16;
}
}
/*
* AES Decryption
*/
void aes_decrypt_n(const byte in[], byte out[], size_t blocks,
const secure_vector<u32bit>& DK,
const secure_vector<byte>& MD)
{
BOTAN_ASSERT(DK.size() && MD.size() == 16, "Key was set");
const size_t cache_line_size = CPUID::cache_line_size();
const std::vector<u32bit>& TD = AES_TD();
u32bit Z = 0;
for(size_t i = 0; i < TD.size(); i += cache_line_size / sizeof(u32bit))
{
Z |= TD[i];
}
Z &= TD[99]; // this is zero, which hopefully the compiler cannot deduce
for(size_t i = 0; i != blocks; ++i)
{
u32bit T0 = load_be<u32bit>(in, 0) ^ DK[0];
u32bit T1 = load_be<u32bit>(in, 1) ^ DK[1];
u32bit T2 = load_be<u32bit>(in, 2) ^ DK[2];
u32bit T3 = load_be<u32bit>(in, 3) ^ DK[3];
T0 ^= Z;
u32bit B0 = TD[get_byte(0, T0)] ^
rotate_right(TD[get_byte(1, T3)], 8) ^
rotate_right(TD[get_byte(2, T2)], 16) ^
rotate_right(TD[get_byte(3, T1)], 24) ^ DK[4];
u32bit B1 = TD[get_byte(0, T1)] ^
rotate_right(TD[get_byte(1, T0)], 8) ^
rotate_right(TD[get_byte(2, T3)], 16) ^
rotate_right(TD[get_byte(3, T2)], 24) ^ DK[5];
u32bit B2 = TD[get_byte(0, T2)] ^
rotate_right(TD[get_byte(1, T1)], 8) ^
rotate_right(TD[get_byte(2, T0)], 16) ^
rotate_right(TD[get_byte(3, T3)], 24) ^ DK[6];
u32bit B3 = TD[get_byte(0, T3)] ^
rotate_right(TD[get_byte(1, T2)], 8) ^
rotate_right(TD[get_byte(2, T1)], 16) ^
rotate_right(TD[get_byte(3, T0)], 24) ^ DK[7];
for(size_t r = 2*4; r < DK.size(); r += 2*4)
{
T0 = DK[r ] ^ TD[get_byte(0, B0) ] ^ TD[get_byte(1, B3) + 256] ^
TD[get_byte(2, B2) + 512] ^ TD[get_byte(3, B1) + 768];
T1 = DK[r+1] ^ TD[get_byte(0, B1) ] ^ TD[get_byte(1, B0) + 256] ^
TD[get_byte(2, B3) + 512] ^ TD[get_byte(3, B2) + 768];
T2 = DK[r+2] ^ TD[get_byte(0, B2) ] ^ TD[get_byte(1, B1) + 256] ^
TD[get_byte(2, B0) + 512] ^ TD[get_byte(3, B3) + 768];
T3 = DK[r+3] ^ TD[get_byte(0, B3) ] ^ TD[get_byte(1, B2) + 256] ^
TD[get_byte(2, B1) + 512] ^ TD[get_byte(3, B0) + 768];
B0 = DK[r+4] ^ TD[get_byte(0, T0) ] ^ TD[get_byte(1, T3) + 256] ^
TD[get_byte(2, T2) + 512] ^ TD[get_byte(3, T1) + 768];
B1 = DK[r+5] ^ TD[get_byte(0, T1) ] ^ TD[get_byte(1, T0) + 256] ^
TD[get_byte(2, T3) + 512] ^ TD[get_byte(3, T2) + 768];
B2 = DK[r+6] ^ TD[get_byte(0, T2) ] ^ TD[get_byte(1, T1) + 256] ^
TD[get_byte(2, T0) + 512] ^ TD[get_byte(3, T3) + 768];
B3 = DK[r+7] ^ TD[get_byte(0, T3) ] ^ TD[get_byte(1, T2) + 256] ^
TD[get_byte(2, T1) + 512] ^ TD[get_byte(3, T0) + 768];
}
out[ 0] = SD[get_byte(0, B0)] ^ MD[0];
out[ 1] = SD[get_byte(1, B3)] ^ MD[1];
out[ 2] = SD[get_byte(2, B2)] ^ MD[2];
out[ 3] = SD[get_byte(3, B1)] ^ MD[3];
out[ 4] = SD[get_byte(0, B1)] ^ MD[4];
out[ 5] = SD[get_byte(1, B0)] ^ MD[5];
out[ 6] = SD[get_byte(2, B3)] ^ MD[6];
out[ 7] = SD[get_byte(3, B2)] ^ MD[7];
out[ 8] = SD[get_byte(0, B2)] ^ MD[8];
out[ 9] = SD[get_byte(1, B1)] ^ MD[9];
out[10] = SD[get_byte(2, B0)] ^ MD[10];
out[11] = SD[get_byte(3, B3)] ^ MD[11];
out[12] = SD[get_byte(0, B3)] ^ MD[12];
out[13] = SD[get_byte(1, B2)] ^ MD[13];
out[14] = SD[get_byte(2, B1)] ^ MD[14];
out[15] = SD[get_byte(3, B0)] ^ MD[15];
in += 16;
out += 16;
}
}
void aes_key_schedule(const byte key[], size_t length,
secure_vector<u32bit>& EK,
secure_vector<u32bit>& DK,
secure_vector<byte>& ME,
secure_vector<byte>& MD)
{
static const u32bit RC[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
const size_t rounds = (length / 4) + 6;
secure_vector<u32bit> XEK(length + 32), XDK(length + 32);
const size_t X = length / 4;
for(size_t i = 0; i != X; ++i)
XEK[i] = load_be<u32bit>(key, i);
for(size_t i = X; i < 4*(rounds+1); i += X)
{
XEK[i] = XEK[i-X] ^ RC[(i-X)/X] ^
make_u32bit(SE[get_byte(1, XEK[i-1])],
SE[get_byte(2, XEK[i-1])],
SE[get_byte(3, XEK[i-1])],
SE[get_byte(0, XEK[i-1])]);
for(size_t j = 1; j != X; ++j)
{
XEK[i+j] = XEK[i+j-X];
if(X == 8 && j == 4)
XEK[i+j] ^= make_u32bit(SE[get_byte(0, XEK[i+j-1])],
SE[get_byte(1, XEK[i+j-1])],
SE[get_byte(2, XEK[i+j-1])],
SE[get_byte(3, XEK[i+j-1])]);
else
XEK[i+j] ^= XEK[i+j-1];
}
}
const std::vector<u32bit>& TD = AES_TD();
for(size_t i = 0; i != 4*(rounds+1); i += 4)
{
XDK[i ] = XEK[4*rounds-i ];
XDK[i+1] = XEK[4*rounds-i+1];
XDK[i+2] = XEK[4*rounds-i+2];
XDK[i+3] = XEK[4*rounds-i+3];
}
for(size_t i = 4; i != length + 24; ++i)
XDK[i] = TD[SE[get_byte(0, XDK[i])] + 0] ^
TD[SE[get_byte(1, XDK[i])] + 256] ^
TD[SE[get_byte(2, XDK[i])] + 512] ^
TD[SE[get_byte(3, XDK[i])] + 768];
ME.resize(16);
MD.resize(16);
for(size_t i = 0; i != 4; ++i)
{
store_be(XEK[i+4*rounds], &ME[4*i]);
store_be(XEK[i], &MD[4*i]);
}
EK.resize(length + 24);
DK.resize(length + 24);
copy_mem(EK.data(), XEK.data(), EK.size());
copy_mem(DK.data(), XDK.data(), DK.size());
}
}
void AES_128::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_128::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_128::key_schedule(const byte key[], size_t length)
{
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_128::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_192::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_192::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_192::key_schedule(const byte key[], size_t length)
{
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_192::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_256::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_256::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_256::key_schedule(const byte key[], size_t length)
{
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_256::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
}
|