1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
/*
* (C) 1999-2010,2015,2017,2018,2020 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/aes.h>
#include <botan/internal/loadstor.h>
#include <botan/cpuid.h>
#include <botan/internal/rotate.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/ct_utils.h>
namespace Botan {
#if defined(BOTAN_HAS_AES_POWER8) || defined(BOTAN_HAS_AES_ARMV8) || defined(BOTAN_HAS_AES_NI)
#define BOTAN_HAS_HW_AES_SUPPORT
#endif
/*
* One of three AES implementation strategies are used to get a constant time
* implementation which is immune to common cache/timing based side channels:
*
* - If AES hardware support is available (AES-NI, POWER8, Aarch64) use that
*
* - If 128-bit SIMD with byte shuffles are available (SSSE3, NEON, or Altivec),
* use the vperm technique published by Mike Hamburg at CHES 2009.
*
* - If no hardware or SIMD support, fall back to a constant time bitsliced
* implementation. This uses 32-bit words resulting in 2 blocks being processed
* in parallel. Moving to 4 blocks (with 64-bit words) would approximately
* double performance on 64-bit CPUs. Likewise moving to 128 bit SIMD would
* again approximately double performance vs 64-bit. However the assumption is
* that most 64-bit CPUs either have hardware AES or SIMD shuffle support and
* that the majority of users falling back to this code will be 32-bit cores.
* If this assumption proves to be unsound, the bitsliced code can easily be
* extended to operate on either 32 or 64 bit words depending on the native
* wordsize of the target processor.
*
* Useful references
*
* - "Accelerating AES with Vector Permute Instructions" Mike Hamburg
* https://www.shiftleft.org/papers/vector_aes/vector_aes.pdf
*
* - "Faster and Timing-Attack Resistant AES-GCM" Käsper and Schwabe
* https://eprint.iacr.org/2009/129.pdf
*
* - "A new combinational logic minimization technique with applications to cryptology."
* Boyar and Peralta https://eprint.iacr.org/2009/191.pdf
*
* - "A depth-16 circuit for the AES S-box" Boyar and Peralta
* https://eprint.iacr.org/2011/332.pdf
*
* - "A Very Compact S-box for AES" Canright
* https://www.iacr.org/archive/ches2005/032.pdf
* https://core.ac.uk/download/pdf/36694529.pdf (extended)
*/
namespace {
/*
This is an AES sbox circuit which can execute in bitsliced mode up to 32x in
parallel.
The circuit is from the "Circuit Minimization Team" group
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt
This circuit has size 113 and depth 27. In software it is much faster than
circuits which are considered faster for hardware purposes (where circuit depth
is the critical constraint), because unlike in hardware, on common CPUs we can
only execute - at best - 3 or 4 logic operations per cycle. So a smaller circuit
is superior. On an x86-64 machine this circuit is about 15% faster than the
circuit of size 128 and depth 16 given in "A depth-16 circuit for the AES S-box".
Another circuit for AES Sbox of size 102 and depth 24 is describted in "New
Circuit Minimization Techniques for Smaller and Faster AES SBoxes"
[https://eprint.iacr.org/2019/802] however it relies on "non-standard" gates
like MUX, NOR, NAND, etc and so in practice in bitsliced software, its size is
actually a bit larger than this circuit, as few CPUs have such instructions and
otherwise they must be emulated using a sequence of available bit operations.
*/
void AES_SBOX(uint32_t V[8])
{
const uint32_t U0 = V[0];
const uint32_t U1 = V[1];
const uint32_t U2 = V[2];
const uint32_t U3 = V[3];
const uint32_t U4 = V[4];
const uint32_t U5 = V[5];
const uint32_t U6 = V[6];
const uint32_t U7 = V[7];
const uint32_t y14 = U3 ^ U5;
const uint32_t y13 = U0 ^ U6;
const uint32_t y9 = U0 ^ U3;
const uint32_t y8 = U0 ^ U5;
const uint32_t t0 = U1 ^ U2;
const uint32_t y1 = t0 ^ U7;
const uint32_t y4 = y1 ^ U3;
const uint32_t y12 = y13 ^ y14;
const uint32_t y2 = y1 ^ U0;
const uint32_t y5 = y1 ^ U6;
const uint32_t y3 = y5 ^ y8;
const uint32_t t1 = U4 ^ y12;
const uint32_t y15 = t1 ^ U5;
const uint32_t y20 = t1 ^ U1;
const uint32_t y6 = y15 ^ U7;
const uint32_t y10 = y15 ^ t0;
const uint32_t y11 = y20 ^ y9;
const uint32_t y7 = U7 ^ y11;
const uint32_t y17 = y10 ^ y11;
const uint32_t y19 = y10 ^ y8;
const uint32_t y16 = t0 ^ y11;
const uint32_t y21 = y13 ^ y16;
const uint32_t y18 = U0 ^ y16;
const uint32_t t2 = y12 & y15;
const uint32_t t3 = y3 & y6;
const uint32_t t4 = t3 ^ t2;
const uint32_t t5 = y4 & U7;
const uint32_t t6 = t5 ^ t2;
const uint32_t t7 = y13 & y16;
const uint32_t t8 = y5 & y1;
const uint32_t t9 = t8 ^ t7;
const uint32_t t10 = y2 & y7;
const uint32_t t11 = t10 ^ t7;
const uint32_t t12 = y9 & y11;
const uint32_t t13 = y14 & y17;
const uint32_t t14 = t13 ^ t12;
const uint32_t t15 = y8 & y10;
const uint32_t t16 = t15 ^ t12;
const uint32_t t17 = t4 ^ y20;
const uint32_t t18 = t6 ^ t16;
const uint32_t t19 = t9 ^ t14;
const uint32_t t20 = t11 ^ t16;
const uint32_t t21 = t17 ^ t14;
const uint32_t t22 = t18 ^ y19;
const uint32_t t23 = t19 ^ y21;
const uint32_t t24 = t20 ^ y18;
const uint32_t t25 = t21 ^ t22;
const uint32_t t26 = t21 & t23;
const uint32_t t27 = t24 ^ t26;
const uint32_t t28 = t25 & t27;
const uint32_t t29 = t28 ^ t22;
const uint32_t t30 = t23 ^ t24;
const uint32_t t31 = t22 ^ t26;
const uint32_t t32 = t31 & t30;
const uint32_t t33 = t32 ^ t24;
const uint32_t t34 = t23 ^ t33;
const uint32_t t35 = t27 ^ t33;
const uint32_t t36 = t24 & t35;
const uint32_t t37 = t36 ^ t34;
const uint32_t t38 = t27 ^ t36;
const uint32_t t39 = t29 & t38;
const uint32_t t40 = t25 ^ t39;
const uint32_t t41 = t40 ^ t37;
const uint32_t t42 = t29 ^ t33;
const uint32_t t43 = t29 ^ t40;
const uint32_t t44 = t33 ^ t37;
const uint32_t t45 = t42 ^ t41;
const uint32_t z0 = t44 & y15;
const uint32_t z1 = t37 & y6;
const uint32_t z2 = t33 & U7;
const uint32_t z3 = t43 & y16;
const uint32_t z4 = t40 & y1;
const uint32_t z5 = t29 & y7;
const uint32_t z6 = t42 & y11;
const uint32_t z7 = t45 & y17;
const uint32_t z8 = t41 & y10;
const uint32_t z9 = t44 & y12;
const uint32_t z10 = t37 & y3;
const uint32_t z11 = t33 & y4;
const uint32_t z12 = t43 & y13;
const uint32_t z13 = t40 & y5;
const uint32_t z14 = t29 & y2;
const uint32_t z15 = t42 & y9;
const uint32_t z16 = t45 & y14;
const uint32_t z17 = t41 & y8;
const uint32_t tc1 = z15 ^ z16;
const uint32_t tc2 = z10 ^ tc1;
const uint32_t tc3 = z9 ^ tc2;
const uint32_t tc4 = z0 ^ z2;
const uint32_t tc5 = z1 ^ z0;
const uint32_t tc6 = z3 ^ z4;
const uint32_t tc7 = z12 ^ tc4;
const uint32_t tc8 = z7 ^ tc6;
const uint32_t tc9 = z8 ^ tc7;
const uint32_t tc10 = tc8 ^ tc9;
const uint32_t tc11 = tc6 ^ tc5;
const uint32_t tc12 = z3 ^ z5;
const uint32_t tc13 = z13 ^ tc1;
const uint32_t tc14 = tc4 ^ tc12;
const uint32_t S3 = tc3 ^ tc11;
const uint32_t tc16 = z6 ^ tc8;
const uint32_t tc17 = z14 ^ tc10;
const uint32_t tc18 = ~tc13 ^ tc14;
const uint32_t S7 = z12 ^ tc18;
const uint32_t tc20 = z15 ^ tc16;
const uint32_t tc21 = tc2 ^ z11;
const uint32_t S0 = tc3 ^ tc16;
const uint32_t S6 = tc10 ^ tc18;
const uint32_t S4 = tc14 ^ S3;
const uint32_t S1 = ~(S3 ^ tc16);
const uint32_t tc26 = tc17 ^ tc20;
const uint32_t S2 = ~(tc26 ^ z17);
const uint32_t S5 = tc21 ^ tc17;
V[0] = S0;
V[1] = S1;
V[2] = S2;
V[3] = S3;
V[4] = S4;
V[5] = S5;
V[6] = S6;
V[7] = S7;
}
/*
A circuit for inverse AES Sbox of size 121 and depth 21 from
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/Sinv.txt
*/
void AES_INV_SBOX(uint32_t V[8])
{
const uint32_t U0 = V[0];
const uint32_t U1 = V[1];
const uint32_t U2 = V[2];
const uint32_t U3 = V[3];
const uint32_t U4 = V[4];
const uint32_t U5 = V[5];
const uint32_t U6 = V[6];
const uint32_t U7 = V[7];
const uint32_t Y0 = U0 ^ U3;
const uint32_t Y2 = ~(U1 ^ U3);
const uint32_t Y4 = U0 ^ Y2;
const uint32_t RTL0 = U6 ^ U7;
const uint32_t Y1 = Y2 ^ RTL0;
const uint32_t Y7 = ~(U2 ^ Y1);
const uint32_t RTL1 = U3 ^ U4;
const uint32_t Y6 = ~(U7 ^ RTL1);
const uint32_t Y3 = Y1 ^ RTL1;
const uint32_t RTL2 = ~(U0 ^ U2);
const uint32_t Y5 = U5 ^ RTL2;
const uint32_t sa1 = Y0 ^ Y2;
const uint32_t sa0 = Y1 ^ Y3;
const uint32_t sb1 = Y4 ^ Y6;
const uint32_t sb0 = Y5 ^ Y7;
const uint32_t ah = Y0 ^ Y1;
const uint32_t al = Y2 ^ Y3;
const uint32_t aa = sa0 ^ sa1;
const uint32_t bh = Y4 ^ Y5;
const uint32_t bl = Y6 ^ Y7;
const uint32_t bb = sb0 ^ sb1;
const uint32_t ab20 = sa0 ^ sb0;
const uint32_t ab22 = al ^ bl;
const uint32_t ab23 = Y3 ^ Y7;
const uint32_t ab21 = sa1 ^ sb1;
const uint32_t abcd1 = ah & bh;
const uint32_t rr1 = Y0 & Y4;
const uint32_t ph11 = ab20 ^ abcd1;
const uint32_t t01 = Y1 & Y5;
const uint32_t ph01 = t01 ^ abcd1;
const uint32_t abcd2 = al & bl;
const uint32_t r1 = Y2 & Y6;
const uint32_t pl11 = ab22 ^ abcd2;
const uint32_t r2 = Y3 & Y7;
const uint32_t pl01 = r2 ^ abcd2;
const uint32_t r3 = sa0 & sb0;
const uint32_t vr1 = aa & bb;
const uint32_t pr1 = vr1 ^ r3;
const uint32_t wr1 = sa1 & sb1;
const uint32_t qr1 = wr1 ^ r3;
const uint32_t ab0 = ph11 ^ rr1;
const uint32_t ab1 = ph01 ^ ab21;
const uint32_t ab2 = pl11 ^ r1;
const uint32_t ab3 = pl01 ^ qr1;
const uint32_t cp1 = ab0 ^ pr1;
const uint32_t cp2 = ab1 ^ qr1;
const uint32_t cp3 = ab2 ^ pr1;
const uint32_t cp4 = ab3 ^ ab23;
const uint32_t tinv1 = cp3 ^ cp4;
const uint32_t tinv2 = cp3 & cp1;
const uint32_t tinv3 = cp2 ^ tinv2;
const uint32_t tinv4 = cp1 ^ cp2;
const uint32_t tinv5 = cp4 ^ tinv2;
const uint32_t tinv6 = tinv5 & tinv4;
const uint32_t tinv7 = tinv3 & tinv1;
const uint32_t d2 = cp4 ^ tinv7;
const uint32_t d0 = cp2 ^ tinv6;
const uint32_t tinv8 = cp1 & cp4;
const uint32_t tinv9 = tinv4 & tinv8;
const uint32_t tinv10 = tinv4 ^ tinv2;
const uint32_t d1 = tinv9 ^ tinv10;
const uint32_t tinv11 = cp2 & cp3;
const uint32_t tinv12 = tinv1 & tinv11;
const uint32_t tinv13 = tinv1 ^ tinv2;
const uint32_t d3 = tinv12 ^ tinv13;
const uint32_t sd1 = d1 ^ d3;
const uint32_t sd0 = d0 ^ d2;
const uint32_t dl = d0 ^ d1;
const uint32_t dh = d2 ^ d3;
const uint32_t dd = sd0 ^ sd1;
const uint32_t abcd3 = dh & bh;
const uint32_t rr2 = d3 & Y4;
const uint32_t t02 = d2 & Y5;
const uint32_t abcd4 = dl & bl;
const uint32_t r4 = d1 & Y6;
const uint32_t r5 = d0 & Y7;
const uint32_t r6 = sd0 & sb0;
const uint32_t vr2 = dd & bb;
const uint32_t wr2 = sd1 & sb1;
const uint32_t abcd5 = dh & ah;
const uint32_t r7 = d3 & Y0;
const uint32_t r8 = d2 & Y1;
const uint32_t abcd6 = dl & al;
const uint32_t r9 = d1 & Y2;
const uint32_t r10 = d0 & Y3;
const uint32_t r11 = sd0 & sa0;
const uint32_t vr3 = dd & aa;
const uint32_t wr3 = sd1 & sa1;
const uint32_t ph12 = rr2 ^ abcd3;
const uint32_t ph02 = t02 ^ abcd3;
const uint32_t pl12 = r4 ^ abcd4;
const uint32_t pl02 = r5 ^ abcd4;
const uint32_t pr2 = vr2 ^ r6;
const uint32_t qr2 = wr2 ^ r6;
const uint32_t p0 = ph12 ^ pr2;
const uint32_t p1 = ph02 ^ qr2;
const uint32_t p2 = pl12 ^ pr2;
const uint32_t p3 = pl02 ^ qr2;
const uint32_t ph13 = r7 ^ abcd5;
const uint32_t ph03 = r8 ^ abcd5;
const uint32_t pl13 = r9 ^ abcd6;
const uint32_t pl03 = r10 ^ abcd6;
const uint32_t pr3 = vr3 ^ r11;
const uint32_t qr3 = wr3 ^ r11;
const uint32_t p4 = ph13 ^ pr3;
const uint32_t S7 = ph03 ^ qr3;
const uint32_t p6 = pl13 ^ pr3;
const uint32_t p7 = pl03 ^ qr3;
const uint32_t S3 = p1 ^ p6;
const uint32_t S6 = p2 ^ p6;
const uint32_t S0 = p3 ^ p6;
const uint32_t X11 = p0 ^ p2;
const uint32_t S5 = S0 ^ X11;
const uint32_t X13 = p4 ^ p7;
const uint32_t X14 = X11 ^ X13;
const uint32_t S1 = S3 ^ X14;
const uint32_t X16 = p1 ^ S7;
const uint32_t S2 = X14 ^ X16;
const uint32_t X18 = p0 ^ p4;
const uint32_t X19 = S5 ^ X16;
const uint32_t S4 = X18 ^ X19;
V[0] = S0;
V[1] = S1;
V[2] = S2;
V[3] = S3;
V[4] = S4;
V[5] = S5;
V[6] = S6;
V[7] = S7;
}
inline void bit_transpose(uint32_t B[8])
{
swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
swap_bits<uint32_t>(B[5], B[4], 0x55555555, 1);
swap_bits<uint32_t>(B[7], B[6], 0x55555555, 1);
swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
swap_bits<uint32_t>(B[6], B[4], 0x33333333, 2);
swap_bits<uint32_t>(B[7], B[5], 0x33333333, 2);
swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
}
inline void ks_expand(uint32_t B[8], const uint32_t K[], size_t r)
{
/*
This is bit_transpose of K[r..r+4] || K[r..r+4], we can save some computation
due to knowing the first and second halves are the same data.
*/
for(size_t i = 0; i != 4; ++i)
B[i] = K[r + i];
swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
B[4] = B[0];
B[5] = B[1];
B[6] = B[2];
B[7] = B[3];
swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
}
inline void shift_rows(uint32_t B[8])
{
// 3 0 1 2 7 4 5 6 10 11 8 9 14 15 12 13 17 18 19 16 21 22 23 20 24 25 26 27 28 29 30 31
#if defined(BOTAN_TARGET_CPU_HAS_NATIVE_64BIT)
for(size_t i = 0; i != 8; i += 2)
{
uint64_t x = (static_cast<uint64_t>(B[i]) << 32) | B[i+1];
x = bit_permute_step<uint64_t>(x, 0x0022331100223311, 2);
x = bit_permute_step<uint64_t>(x, 0x0055005500550055, 1);
B[i] = static_cast<uint32_t>(x >> 32);
B[i+1] = static_cast<uint32_t>(x);
}
#else
for(size_t i = 0; i != 8; ++i)
{
uint32_t x = B[i];
x = bit_permute_step<uint32_t>(x, 0x00223311, 2);
x = bit_permute_step<uint32_t>(x, 0x00550055, 1);
B[i] = x;
}
#endif
}
inline void inv_shift_rows(uint32_t B[8])
{
// Inverse of shift_rows, just inverting the steps
#if defined(BOTAN_TARGET_CPU_HAS_NATIVE_64BIT)
for(size_t i = 0; i != 8; i += 2)
{
uint64_t x = (static_cast<uint64_t>(B[i]) << 32) | B[i+1];
x = bit_permute_step<uint64_t>(x, 0x0055005500550055, 1);
x = bit_permute_step<uint64_t>(x, 0x0022331100223311, 2);
B[i] = static_cast<uint32_t>(x >> 32);
B[i+1] = static_cast<uint32_t>(x);
}
#else
for(size_t i = 0; i != 8; ++i)
{
uint32_t x = B[i];
x = bit_permute_step<uint32_t>(x, 0x00550055, 1);
x = bit_permute_step<uint32_t>(x, 0x00223311, 2);
B[i] = x;
}
#endif
}
inline void mix_columns(uint32_t B[8])
{
// carry high bits in B[0] to positions in 0x1b == 0b11011
const uint32_t X2[8] = {
B[1],
B[2],
B[3],
B[4] ^ B[0],
B[5] ^ B[0],
B[6],
B[7] ^ B[0],
B[0],
};
for(size_t i = 0; i != 8; i++)
{
const uint32_t X3 = B[i] ^ X2[i];
B[i] = X2[i] ^ rotr<8>(B[i]) ^ rotr<16>(B[i]) ^ rotr<24>(X3);
}
}
void inv_mix_columns(uint32_t B[8])
{
/*
OpenSSL's bsaes implementation credits Jussi Kivilinna with the lovely
matrix decomposition
| 0e 0b 0d 09 | | 02 03 01 01 | | 05 00 04 00 |
| 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
| 0d 09 0e 0b | | 01 01 02 03 | | 04 00 05 00 |
| 0b 0d 09 0e | | 03 01 01 02 | | 00 04 00 05 |
Notice the first component is simply the MixColumns matrix. So we can
multiply first by (05,00,04,00) then perform MixColumns to get the equivalent
of InvMixColumn.
*/
const uint32_t X4[8] = {
B[2],
B[3],
B[4] ^ B[0],
B[5] ^ B[0] ^ B[1],
B[6] ^ B[1],
B[7] ^ B[0],
B[0] ^ B[1],
B[1],
};
for(size_t i = 0; i != 8; i++)
{
const uint32_t X5 = X4[i] ^ B[i];
B[i] = X5 ^ rotr<16>(X4[i]);
}
mix_columns(B);
}
/*
* AES Encryption
*/
void aes_encrypt_n(const uint8_t in[], uint8_t out[],
size_t blocks,
const secure_vector<uint32_t>& EK)
{
BOTAN_ASSERT(EK.size() == 44 || EK.size() == 52 || EK.size() == 60, "Key was set");
const size_t rounds = (EK.size() - 4) / 4;
uint32_t KS[13*8] = { 0 }; // actual maximum is (rounds - 1) * 8
for(size_t i = 0; i < rounds - 1; i += 1)
{
ks_expand(&KS[8*i], EK.data(), 4*i + 4);
}
const size_t BLOCK_SIZE = 16;
const size_t BITSLICED_BLOCKS = 8*sizeof(uint32_t) / BLOCK_SIZE;
while(blocks > 0)
{
const size_t this_loop = std::min(blocks, BITSLICED_BLOCKS);
uint32_t B[8] = { 0 };
load_be(B, in, this_loop*4);
for(size_t i = 0; i != 8; ++i)
B[i] ^= EK[i % 4];
bit_transpose(B);
for(size_t r = 0; r != rounds - 1; ++r)
{
AES_SBOX(B);
shift_rows(B);
mix_columns(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= KS[8*r + i];
}
// Final round:
AES_SBOX(B);
shift_rows(B);
bit_transpose(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= EK[4*rounds + i % 4];
copy_out_be(out, this_loop*4*sizeof(uint32_t), B);
in += this_loop * BLOCK_SIZE;
out += this_loop * BLOCK_SIZE;
blocks -= this_loop;
}
}
/*
* AES Decryption
*/
void aes_decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks,
const secure_vector<uint32_t>& DK)
{
BOTAN_ASSERT(DK.size() == 44 || DK.size() == 52 || DK.size() == 60, "Key was set");
const size_t rounds = (DK.size() - 4) / 4;
uint32_t KS[13*8] = { 0 }; // actual maximum is (rounds - 1) * 8
for(size_t i = 0; i < rounds - 1; i += 1)
{
ks_expand(&KS[8*i], DK.data(), 4*i + 4);
}
const size_t BLOCK_SIZE = 16;
const size_t BITSLICED_BLOCKS = 8*sizeof(uint32_t) / BLOCK_SIZE;
while(blocks > 0)
{
const size_t this_loop = std::min(blocks, BITSLICED_BLOCKS);
uint32_t B[8] = { 0 };
load_be(B, in, this_loop*4);
for(size_t i = 0; i != 8; ++i)
B[i] ^= DK[i % 4];
bit_transpose(B);
for(size_t r = 0; r != rounds - 1; ++r)
{
AES_INV_SBOX(B);
inv_shift_rows(B);
inv_mix_columns(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= KS[8*r + i];
}
// Final round:
AES_INV_SBOX(B);
inv_shift_rows(B);
bit_transpose(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= DK[4*rounds + i % 4];
copy_out_be(out, this_loop*4*sizeof(uint32_t), B);
in += this_loop * BLOCK_SIZE;
out += this_loop * BLOCK_SIZE;
blocks -= this_loop;
}
}
inline uint32_t xtime32(uint32_t s)
{
const uint32_t lo_bit = 0x01010101;
const uint32_t mask = 0x7F7F7F7F;
const uint32_t poly = 0x1B;
return ((s & mask) << 1) ^ (((s >> 7) & lo_bit) * poly);
}
inline uint32_t InvMixColumn(uint32_t s1)
{
const uint32_t s2 = xtime32(s1);
const uint32_t s4 = xtime32(s2);
const uint32_t s8 = xtime32(s4);
const uint32_t s9 = s8 ^ s1;
const uint32_t s11 = s9 ^ s2;
const uint32_t s13 = s9 ^ s4;
const uint32_t s14 = s8 ^ s4 ^ s2;
return s14 ^ rotr<8>(s9) ^ rotr<16>(s13) ^ rotr<24>(s11);
}
void InvMixColumn_x4(uint32_t x[4])
{
x[0] = InvMixColumn(x[0]);
x[1] = InvMixColumn(x[1]);
x[2] = InvMixColumn(x[2]);
x[3] = InvMixColumn(x[3]);
}
uint32_t SE_word(uint32_t x)
{
uint32_t I[8] = { 0 };
for(size_t i = 0; i != 8; ++i)
I[i] = (x >> (7-i)) & 0x01010101;
AES_SBOX(I);
x = 0;
for(size_t i = 0; i != 8; ++i)
x |= ((I[i] & 0x01010101) << (7-i));
return x;
}
void aes_key_schedule(const uint8_t key[], size_t length,
secure_vector<uint32_t>& EK,
secure_vector<uint32_t>& DK,
bool bswap_keys = false)
{
static const uint32_t RC[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
const size_t X = length / 4;
// Can't happen, but make static analyzers happy
BOTAN_ASSERT_NOMSG(X == 4 || X == 6 || X == 8);
const size_t rounds = (length / 4) + 6;
// Help the optimizer
BOTAN_ASSERT_NOMSG(rounds == 10 || rounds == 12 || rounds == 14);
CT::poison(key, length);
EK.resize(length + 28);
DK.resize(length + 28);
for(size_t i = 0; i != X; ++i)
EK[i] = load_be<uint32_t>(key, i);
for(size_t i = X; i < 4*(rounds+1); i += X)
{
EK[i] = EK[i-X] ^ RC[(i-X)/X] ^ rotl<8>(SE_word(EK[i-1]));
for(size_t j = 1; j != X && (i+j) < EK.size(); ++j)
{
EK[i+j] = EK[i+j-X];
if(X == 8 && j == 4)
EK[i+j] ^= SE_word(EK[i+j-1]);
else
EK[i+j] ^= EK[i+j-1];
}
}
for(size_t i = 0; i != 4*(rounds+1); i += 4)
{
DK[i ] = EK[4*rounds - i ];
DK[i+1] = EK[4*rounds - i+1];
DK[i+2] = EK[4*rounds - i+2];
DK[i+3] = EK[4*rounds - i+3];
}
for(size_t i = 4; i != 4*rounds; i += 4)
{
InvMixColumn_x4(&DK[i]);
}
if(bswap_keys)
{
// HW AES on little endian needs the subkeys to be byte reversed
for(size_t i = 0; i != EK.size(); ++i)
EK[i] = reverse_bytes(EK[i]);
for(size_t i = 0; i != DK.size(); ++i)
DK[i] = reverse_bytes(DK[i]);
}
CT::unpoison(EK.data(), EK.size());
CT::unpoison(DK.data(), DK.size());
CT::unpoison(key, length);
}
size_t aes_parallelism()
{
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return 4; // pipelined
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return 2; // pipelined
}
#endif
// bitsliced:
return 2;
}
const char* aes_provider()
{
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return "cpu";
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return "vperm";
}
#endif
return "base";
}
}
std::string AES_128::provider() const { return aes_provider(); }
std::string AES_192::provider() const { return aes_provider(); }
std::string AES_256::provider() const { return aes_provider(); }
size_t AES_128::parallelism() const { return aes_parallelism(); }
size_t AES_192::parallelism() const { return aes_parallelism(); }
size_t AES_256::parallelism() const { return aes_parallelism(); }
void AES_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK);
}
void AES_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK);
}
void AES_128::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, CPUID::is_little_endian());
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK);
}
void AES_128::clear()
{
zap(m_EK);
zap(m_DK);
}
void AES_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK);
}
void AES_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK);
}
void AES_192::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, CPUID::is_little_endian());
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK);
}
void AES_192::clear()
{
zap(m_EK);
zap(m_DK);
}
void AES_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK);
}
void AES_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return hw_aes_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK);
}
void AES_256::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
if(CPUID::has_hw_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, CPUID::is_little_endian());
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK);
}
void AES_256::clear()
{
zap(m_EK);
zap(m_DK);
}
}
|