1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/*************************************************
* IDEA Source File *
* (C) 1999-2007 The Botan Project *
*************************************************/
#include <botan/idea.h>
#include <botan/bit_ops.h>
namespace Botan {
namespace {
/*************************************************
* Multiplication modulo 65537 *
*************************************************/
inline void mul(u16bit& a, u16bit b)
{
if(a && b)
{
u32bit temp = (u32bit)a * b;
a = (u16bit)(temp >> 16);
b = (u16bit)(temp & 0xFFFF);
a = (u16bit)(b - a + ((b < a) ? 1 : 0));
}
else
a = (u16bit)(1 - a - b);
}
}
/*************************************************
* IDEA Encryption *
*************************************************/
void IDEA::enc(const byte in[], byte out[]) const
{
u16bit X1 = load_be<u16bit>(in, 0);
u16bit X2 = load_be<u16bit>(in, 1);
u16bit X3 = load_be<u16bit>(in, 2);
u16bit X4 = load_be<u16bit>(in, 3);
for(u32bit j = 0; j != 8; ++j)
{
mul(X1, EK[6*j+0]);
X2 += EK[6*j+1];
X3 += EK[6*j+2];
mul(X4, EK[6*j+3]);
u16bit T0 = X3;
X3 ^= X1;
mul(X3, EK[6*j+4]);
u16bit T1 = X2;
X2 = (u16bit)((X2 ^ X4) + X3);
mul(X2, EK[6*j+5]);
X3 += X2;
X1 ^= X2;
X4 ^= X3;
X2 ^= T0;
X3 ^= T1;
}
mul(X1, EK[48]); X2 += EK[50]; X3 += EK[49]; mul(X4, EK[51]);
store_be(out, X1, X3, X2, X4);
}
/*************************************************
* IDEA Decryption *
*************************************************/
void IDEA::dec(const byte in[], byte out[]) const
{
u16bit X1 = load_be<u16bit>(in, 0);
u16bit X2 = load_be<u16bit>(in, 1);
u16bit X3 = load_be<u16bit>(in, 2);
u16bit X4 = load_be<u16bit>(in, 3);
for(u32bit j = 0; j != 8; ++j)
{
mul(X1, DK[6*j+0]);
X2 += DK[6*j+1];
X3 += DK[6*j+2];
mul(X4, DK[6*j+3]);
u16bit T0 = X3;
X3 ^= X1;
mul(X3, DK[6*j+4]);
u16bit T1 = X2;
X2 = (u16bit)((X2 ^ X4) + X3);
mul(X2, DK[6*j+5]);
X3 += X2;
X1 ^= X2;
X4 ^= X3;
X2 ^= T0;
X3 ^= T1;
}
mul(X1, DK[48]); X2 += DK[50]; X3 += DK[49]; mul(X4, DK[51]);
store_be(out, X1, X3, X2, X4);
}
/*************************************************
* Find multiplicative inverses modulo 65537 *
*************************************************/
u16bit IDEA::mul_inv(u16bit x)
{
if(x <= 1)
return x;
u16bit t0 = (u16bit)(65537 / x), t1 = 1, y = (u16bit)(65537 % x);
while(y != 1)
{
u16bit q = (u16bit)(x / y);
x %= y;
t1 += (u16bit)(q * t0);
if(x == 1)
return t1;
q = (u16bit)(y / x);
y %= x;
t0 += (u16bit)(q * t1);
}
return (u16bit)(1 - t0);
}
/*************************************************
* IDEA Key Schedule *
*************************************************/
void IDEA::key(const byte key[], u32bit)
{
for(u32bit j = 0; j != 8; ++j)
EK[j] = load_be<u16bit>(key, j);
for(u32bit j = 1, k = 8, offset = 0; k != 52; j %= 8, ++j, ++k)
{
EK[j+7+offset] = (u16bit)((EK[(j % 8) + offset] << 9) |
(EK[((j+1) % 8) + offset] >> 7));
offset += (j == 8) ? 8 : 0;
}
DK[51] = mul_inv(EK[3]);
DK[50] = (u16bit)-EK[2];
DK[49] = (u16bit)-EK[1];
DK[48] = mul_inv(EK[0]);
for(u32bit j = 1, k = 4, counter = 47; j != 8; ++j, k += 6)
{
DK[counter--] = EK[k+1];
DK[counter--] = EK[k];
DK[counter--] = mul_inv(EK[k+5]);
DK[counter--] = (u16bit)-EK[k+3];
DK[counter--] = (u16bit)-EK[k+4];
DK[counter--] = mul_inv(EK[k+2]);
}
DK[5] = EK[47];
DK[4] = EK[46];
DK[3] = mul_inv(EK[51]);
DK[2] = (u16bit)-EK[50];
DK[1] = (u16bit)-EK[49];
DK[0] = mul_inv(EK[48]);
}
}
|