1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/*
* (C) 2009,2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "cli.h"
#if defined(BOTAN_HAS_NUMBERTHEORY)
#include <botan/reducer.h>
#include <botan/numthry.h>
#include <botan/auto_rng.h>
#include <iterator>
namespace Botan_CLI {
class Gen_Prime : public Command
{
public:
Gen_Prime() : Command("gen_prime --count=1 bits") {}
void go() override
{
Botan::AutoSeeded_RNG rng;
const size_t bits = get_arg_sz("bits");
const size_t cnt = get_arg_sz("count");
for(size_t i = 0; i != cnt; ++i)
{
const Botan::BigInt p = Botan::random_prime(rng, bits);
output() << p << "\n";
}
}
};
BOTAN_REGISTER_COMMAND(Gen_Prime);
class Is_Prime : public Command
{
public:
Is_Prime() : Command("is_prime --prob=56 n") {}
void go() override
{
Botan::BigInt n(get_arg("n"));
const size_t prob = get_arg_sz("prob");
Botan::AutoSeeded_RNG rng;
const bool prime = Botan::is_prime(n, rng, prob);
output() << n << " is " << (prime ? "probably prime" : "composite") << "\n";
}
};
BOTAN_REGISTER_COMMAND(Is_Prime);
/*
* Factor integers using a combination of trial division by small
* primes, and Pollard's Rho algorithm
*/
class Factor : public Command
{
public:
Factor() : Command("factor n") {}
void go() override
{
Botan::BigInt n(get_arg("n"));
Botan::AutoSeeded_RNG rng;
std::vector<Botan::BigInt> factors = factorize(n, rng);
std::sort(factors.begin(), factors.end());
output() << n << ": ";
std::copy(factors.begin(),
factors.end(),
std::ostream_iterator<Botan::BigInt>(output(), " "));
output() << std::endl;
}
private:
std::vector<Botan::BigInt> factorize(const Botan::BigInt& n_in,
Botan::RandomNumberGenerator& rng)
{
Botan::BigInt n = n_in;
std::vector<Botan::BigInt> factors = remove_small_factors(n);
while(n != 1)
{
if(Botan::is_prime(n, rng))
{
factors.push_back(n);
break;
}
Botan::BigInt a_factor = 0;
while(a_factor == 0)
a_factor = rho(n, rng);
std::vector<Botan::BigInt> rho_factored = factorize(a_factor, rng);
for(size_t j = 0; j != rho_factored.size(); j++)
factors.push_back(rho_factored[j]);
n /= a_factor;
}
return factors;
}
/*
* Pollard's Rho algorithm, as described in the MIT algorithms book. We
* use (x^2+x) mod n instead of (x*2-1) mod n as the random function,
* it _seems_ to lead to faster factorization for the values I tried.
*/
Botan::BigInt rho(const Botan::BigInt& n, Botan::RandomNumberGenerator& rng)
{
Botan::BigInt x = Botan::BigInt::random_integer(rng, 0, n-1);
Botan::BigInt y = x;
Botan::BigInt d = 0;
Botan::Modular_Reducer mod_n(n);
size_t i = 1, k = 2;
while(true)
{
i++;
if(i == 0) // overflow, bail out
break;
x = mod_n.multiply((x + 1), x);
d = Botan::gcd(y - x, n);
if(d != 1 && d != n)
return d;
if(i == k)
{
y = x;
k = 2*k;
}
}
return 0;
}
// Remove (and return) any small (< 2^16) factors
std::vector<Botan::BigInt> remove_small_factors(Botan::BigInt& n)
{
std::vector<Botan::BigInt> factors;
while(n.is_even())
{
factors.push_back(2);
n /= 2;
}
for(size_t j = 0; j != Botan::PRIME_TABLE_SIZE; j++)
{
uint16_t prime = Botan::PRIMES[j];
if(n < prime)
break;
Botan::BigInt x = Botan::gcd(n, prime);
if(x != 1)
{
n /= x;
while(x != 1)
{
x /= prime;
factors.push_back(prime);
}
}
}
return factors;
}
};
BOTAN_REGISTER_COMMAND(Factor);
}
#endif
|