1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
/*
* (C) 2009,2010,2014,2015 Jack Lloyd
* (C) 2015 Simon Warta (Kullo GmbH)
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "cli.h"
#include <sstream>
#include <iomanip>
#include <chrono>
#include <functional>
// Always available:
#include <botan/block_cipher.h>
#include <botan/stream_cipher.h>
#include <botan/hash.h>
#include <botan/mac.h>
#include <botan/cipher_mode.h>
#include <botan/auto_rng.h>
#if defined(BOTAN_HAS_PUBLIC_KEY_CRYPTO)
#include <botan/pkcs8.h>
#include <botan/pubkey.h>
#include <botan/x509_key.h>
#endif
#if defined(BOTAN_HAS_NUMBERTHEORY)
#include <botan/numthry.h>
#endif
#if defined(BOTAN_HAS_RSA)
#include <botan/rsa.h>
#endif
#if defined(BOTAN_HAS_ECDSA)
#include <botan/ecdsa.h>
#endif
#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
#include <botan/dh.h>
#endif
#if defined(BOTAN_HAS_CURVE_25519)
#include <botan/curve25519.h>
#endif
#if defined(BOTAN_HAS_ECDH)
#include <botan/ecdh.h>
#endif
#if defined(BOTAN_HAS_MCELIECE)
#include <botan/mceliece.h>
#endif
namespace Botan_CLI {
namespace {
class Timer
{
public:
static uint64_t get_clock() // returns nanoseconds with arbitrary epoch
{
auto now = std::chrono::high_resolution_clock::now().time_since_epoch();
return std::chrono::duration_cast<std::chrono::nanoseconds>(now).count();
}
Timer(const std::string& name, uint64_t event_mult = 1) :
m_name(name), m_event_mult(event_mult) {}
Timer(const std::string& what,
const std::string& provider,
const std::string& doing,
uint64_t event_mult = 1) :
m_name(what + (provider.empty() ? provider : " [" + provider + "]")),
m_doing(doing),
m_event_mult(event_mult) {}
void start() { stop(); m_timer_start = get_clock(); }
void stop()
{
if(m_timer_start)
{
const uint64_t now = get_clock();
if(now > m_timer_start)
m_time_used += (now - m_timer_start);
m_timer_start = 0;
++m_event_count;
}
}
bool under(std::chrono::milliseconds msec)
{
return (milliseconds() < msec.count());
}
struct Timer_Scope
{
public:
Timer_Scope(Timer& timer) : m_timer(timer) { m_timer.start(); }
~Timer_Scope() { m_timer.stop(); }
private:
Timer& m_timer;
};
template<typename F>
auto run(F f) -> decltype(f())
{
Timer_Scope timer(*this);
return f();
}
uint64_t value() { stop(); return m_time_used; }
double seconds() { return milliseconds() / 1000.0; }
double milliseconds() { return value() / 1000000.0; }
double ms_per_event() { return milliseconds() / events(); }
double seconds_per_event() { return seconds() / events(); }
uint64_t event_mult() const { return m_event_mult; }
uint64_t events() const { return m_event_count * m_event_mult; }
std::string get_name() const { return m_name; }
std::string doing() const { return m_doing.empty() ? m_doing : " " + m_doing; }
private:
std::string m_name, m_doing;
uint64_t m_time_used = 0, m_timer_start = 0;
uint64_t m_event_count = 0, m_event_mult = 0;
};
std::ostream& operator<<(std::ostream& out, Timer& timer)
{
const double events_per_second = timer.events() / timer.seconds();
// use ostringstream to avoid messing with flags on the ostream& itself
std::ostringstream oss;
if(timer.event_mult() % 1024 == 0)
{
// assumed to be a byte count
const size_t MiB = 1024*1024;
const double MiB_total = static_cast<double>(timer.events()) / MiB;
const double MiB_per_sec = MiB_total / timer.seconds();
oss << timer.get_name() << timer.doing() << " "
<< std::fixed << std::setprecision(3) << MiB_per_sec << " MiB/sec"
<< " (" << MiB_total << " MiB in " << timer.milliseconds() << " ms)\n";
}
else
{
// general event counter
oss << timer.get_name() << " "
<< static_cast<uint64_t>(events_per_second)
<< timer.doing() << "/sec; "
<< std::setprecision(2) << std::fixed
<< timer.ms_per_event() << " ms/op"
<< " (" << timer.events() << " " << (timer.events() == 1 ? "op" : "ops")
<< " in " << timer.milliseconds() << " ms)\n";
}
out << oss.str();
return out;
}
std::vector<std::string> default_benchmark_list()
{
/*
This is not intended to be exhaustive: it just hits the high
points of the most interesting or widely used algorithms.
*/
return {
/* Block ciphers */
"AES-128",
"AES-192",
"AES-256",
"Blowfish",
"CAST-128",
"CAST-256",
"DES",
"TripleDES",
"IDEA",
"KASUMI",
"Noekeon",
"Serpent",
"Threefish-512",
"Twofish",
/* Cipher modes */
"AES-128/CBC",
"AES-128/CTR-BE",
"AES-128/EAX",
"AES-128/OCB",
"AES-128/GCM",
"AES-128/XTS",
"Serpent/CBC",
"Serpent/CTR-BE",
"Serpent/EAX",
"Serpent/OCB",
"Serpent/GCM",
"Serpent/XTS",
"ChaCha20Poly1305",
/* Stream ciphers */
"RC4",
"Salsa20",
/* Hashes */
"Tiger",
"RIPEMD-160",
"SHA-160",
"SHA-256",
"SHA-512",
"Skein-512",
"Keccak-1600(512)",
"Whirlpool",
/* MACs */
"CMAC(AES-128)",
"HMAC(SHA-256)",
/* Misc */
"random_prime"
/* pubkey */
"RSA",
"DH",
"ECDH",
"ECDSA",
"Curve25519",
"McEliece",
};
}
}
class Benchmark : public Command
{
public:
Benchmark() : Command("bench --msec=1000 --provider= --buf-size=8 *algos") {}
void go()
{
std::chrono::milliseconds msec(get_arg_sz("msec"));
const size_t buf_size = get_arg_sz("buf-size");
const std::string provider = get_arg("provider");
std::vector<std::string> algos = get_arg_list("algos");
const bool using_defaults = (algos.empty());
if(using_defaults)
algos = default_benchmark_list();
for(auto algo : algos)
{
using namespace std::placeholders;
if(auto enc = Botan::get_cipher_mode(algo, Botan::ENCRYPTION))
{
auto dec = Botan::get_cipher_mode(algo, Botan::DECRYPTION);
bench_cipher_mode(*enc, *dec, msec, buf_size);
}
else if(Botan::BlockCipher::providers(algo).size() > 0)
{
bench_providers_of<Botan::BlockCipher>(
algo, provider, msec, buf_size,
std::bind(&Benchmark::bench_block_cipher, this, _1, _2, _3, _4));
}
else if(Botan::StreamCipher::providers(algo).size() > 0)
{
bench_providers_of<Botan::StreamCipher>(
algo, provider, msec, buf_size,
std::bind(&Benchmark::bench_stream_cipher, this, _1, _2, _3, _4));
}
else if(Botan::HashFunction::providers(algo).size() > 0)
{
bench_providers_of<Botan::HashFunction>(
algo, provider, msec, buf_size,
std::bind(&Benchmark::bench_hash, this, _1, _2, _3, _4));
}
else if(Botan::MessageAuthenticationCode::providers(algo).size() > 0)
{
bench_providers_of<Botan::MessageAuthenticationCode>(
algo, provider, msec, buf_size,
std::bind(&Benchmark::bench_mac, this, _1, _2, _3, _4));
}
#if defined(BOTAN_HAS_RSA)
else if(algo == "RSA")
{
bench_rsa(provider, msec);
}
#endif
#if defined(BOTAN_HAS_ECDSA)
else if(algo == "ECDSA")
{
bench_ecdsa(provider, msec);
}
#endif
#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
else if(algo == "DH")
{
bench_dh(provider, msec);
}
#endif
#if defined(BOTAN_HAS_ECDH)
else if(algo == "ECDH")
{
bench_ecdh(provider, msec);
}
#endif
#if defined(BOTAN_HAS_CURVE_25519)
else if(algo == "Curve25519")
{
bench_curve25519(provider, msec);
}
#endif
#if defined(BOTAN_HAS_NUMBERTHEORY)
else if(algo == "random_prime")
{
bench_random_prime(msec);
}
#endif
else
{
if(verbose() || !using_defaults)
{
error_output() << "Unknown algorithm to benchmark '" << algo << "'\n";
}
}
}
}
private:
Botan::AutoSeeded_RNG m_rng;
Botan::RandomNumberGenerator& rng() { return m_rng; }
template<typename T>
using bench_fn = std::function<void (T&,
std::string,
std::chrono::milliseconds,
size_t)>;
template<typename T>
void bench_providers_of(const std::string& algo,
const std::string& provider, /* user request, if any */
const std::chrono::milliseconds runtime,
size_t buf_size,
bench_fn<T> bench_one)
{
for(auto&& prov : T::providers(algo))
{
if(provider == "" || provider == prov)
{
auto p = T::create(algo, prov);
if(p)
{
bench_one(*p, prov, runtime, buf_size);
}
}
}
}
void bench_block_cipher(Botan::BlockCipher& cipher,
const std::string& provider,
const std::chrono::milliseconds runtime,
size_t buf_size)
{
Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
Timer encrypt_timer(cipher.name(), provider, "encrypt", buffer.size());
Timer decrypt_timer(cipher.name(), provider, "decrypt", buffer.size());
while(encrypt_timer.under(runtime) && decrypt_timer.under(runtime))
{
const Botan::SymmetricKey key(rng(), cipher.maximum_keylength());
cipher.set_key(key);
encrypt_timer.run([&] { cipher.encrypt(buffer); });
decrypt_timer.run([&] { cipher.decrypt(buffer); });
}
output() << encrypt_timer << decrypt_timer;
}
void bench_stream_cipher(Botan::StreamCipher& cipher,
const std::string& provider,
const std::chrono::milliseconds runtime,
size_t buf_size)
{
Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
Timer encrypt_timer(cipher.name(), provider, "encrypt", buffer.size());
while(encrypt_timer.under(runtime))
{
const Botan::SymmetricKey key(rng(), cipher.maximum_keylength());
cipher.set_key(key);
encrypt_timer.run([&] { cipher.encipher(buffer); });
}
output() << encrypt_timer;
}
void bench_hash(Botan::HashFunction& hash,
const std::string& provider,
const std::chrono::milliseconds runtime,
size_t buf_size)
{
Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
Timer timer(hash.name(), provider, "hashing", buffer.size());
while(timer.under(runtime))
{
timer.run([&] { hash.update(buffer); });
}
output() << timer;
}
void bench_mac(Botan::MessageAuthenticationCode& mac,
const std::string& provider,
const std::chrono::milliseconds runtime,
size_t buf_size)
{
Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
Timer timer(mac.name(), provider, "processing", buffer.size());
while(timer.under(runtime))
{
const Botan::SymmetricKey key(rng(), mac.maximum_keylength());
mac.set_key(key);
timer.run([&] { mac.update(buffer); });
}
output() << timer;
}
void bench_cipher_mode(Botan::Cipher_Mode& enc,
Botan::Cipher_Mode& dec,
const std::chrono::milliseconds runtime,
size_t buf_size)
{
Botan::secure_vector<uint8_t> buffer = rng().random_vec(buf_size * 1024);
Timer encrypt_timer(enc.name(), "", "encrypt", buffer.size());
Timer decrypt_timer(enc.name(), "", "decrypt", buffer.size());
while(encrypt_timer.under(runtime) && decrypt_timer.under(runtime))
{
const Botan::SymmetricKey key(rng(), enc.key_spec().maximum_keylength());
const Botan::secure_vector<uint8_t> iv = rng().random_vec(enc.default_nonce_length());
enc.set_key(key);
dec.set_key(key);
enc.start(iv);
dec.start(iv);
// Must run in this order, or AEADs will reject the ciphertext
encrypt_timer.run([&] { enc.finish(buffer); });
decrypt_timer.run([&] { dec.finish(buffer); });
}
output() << encrypt_timer << decrypt_timer;
}
#if defined(BOTAN_HAS_NUMBERTHEORY)
void bench_random_prime(const std::chrono::milliseconds runtime)
{
const size_t coprime = 65537; // simulates RSA key gen
for(size_t bits : { 1024, 1536 })
{
Timer genprime_timer("random_prime " + std::to_string(bits));
Timer is_prime_timer("is_prime " + std::to_string(bits));
while(genprime_timer.under(runtime) && is_prime_timer.under(runtime))
{
const Botan::BigInt p = genprime_timer.run([&] {
return Botan::random_prime(rng(), bits, coprime); });
const bool ok = is_prime_timer.run([&] {
return Botan::is_prime(p, rng(), 64, true);
});
if(!ok)
{
error_output() << "Generated prime " << p
<< " which then failed primality test";
}
// Now test p+2, p+4, ... which may or may not be prime
for(size_t i = 2; i != 64; i += 2)
{
is_prime_timer.run([&] { Botan::is_prime(p, rng(), 64, true); });
}
}
output() << genprime_timer << is_prime_timer;
}
}
#endif
#if defined(BOTAN_HAS_PUBLIC_KEY_CRYPTO)
void bench_pk_enc(const Botan::Private_Key& key,
const std::string& nm,
const std::string& provider,
const std::string& padding,
std::chrono::milliseconds msec)
{
std::vector<uint8_t> plaintext, ciphertext;
Botan::PK_Encryptor_EME enc(key, padding, provider);
Botan::PK_Decryptor_EME dec(key, padding, provider);
Timer enc_timer(nm, provider, "encrypt");
Timer dec_timer(nm, provider, "decrypt");
while(enc_timer.under(msec) || dec_timer.under(msec))
{
// Generate a new random ciphertext to decrypt
if(ciphertext.empty() || enc_timer.under(msec))
{
plaintext = unlock(rng().random_vec(enc.maximum_input_size()));
ciphertext = enc_timer.run([&] { return enc.encrypt(plaintext, rng()); });
}
if(dec_timer.under(msec))
{
auto dec_pt = dec_timer.run([&] { return dec.decrypt(ciphertext); });
if(dec_pt != plaintext) // sanity check
{
error_output() << "Bad roundtrip in PK encrypt/decrypt bench\n";
}
}
}
output() << enc_timer;
output() << dec_timer;
}
void bench_pk_ka(const Botan::PK_Key_Agreement_Key& key1,
const Botan::PK_Key_Agreement_Key& key2,
const std::string& nm,
const std::string& provider,
const std::string& kdf,
std::chrono::milliseconds msec)
{
Botan::PK_Key_Agreement ka1(key1, kdf /*, provider */);
Botan::PK_Key_Agreement ka2(key2, kdf /*, provider */);
const std::vector<uint8_t> ka1_pub = key1.public_value();
const std::vector<uint8_t> ka2_pub = key2.public_value();
Timer ka_timer(nm, provider, "key agreements");
while(ka_timer.under(msec))
{
Botan::SymmetricKey key1 = ka_timer.run([&] { return ka1.derive_key(32, ka2_pub); });
Botan::SymmetricKey key2 = ka_timer.run([&] { return ka2.derive_key(32, ka1_pub); });
if(key1 != key2)
{
error_output() << "Key agreement mismatch in PK bench\n";
}
}
output() << ka_timer;
}
void bench_pk_sig(const Botan::Private_Key& key,
const std::string& nm,
const std::string& provider,
const std::string& padding,
std::chrono::milliseconds msec)
{
std::vector<uint8_t> message, signature, bad_signature;
Botan::PK_Signer sig(key, padding, Botan::IEEE_1363, provider);
Botan::PK_Verifier ver(key, padding, Botan::IEEE_1363, provider);
Timer sig_timer(nm, provider, "sign");
Timer ver_timer(nm, provider, "verify");
while(ver_timer.under(msec) || sig_timer.under(msec))
{
if(signature.empty() || sig_timer.under(msec))
{
/*
Length here is kind of arbitrary, but 48 bytes fits into a single
hash block so minimizes hashing overhead versus the PK op itself.
*/
message = unlock(rng().random_vec(48));
signature = sig_timer.run([&] { return sig.sign_message(message, rng()); });
bad_signature = signature;
bad_signature[rng().next_byte() % bad_signature.size()] ^= rng().next_nonzero_byte();
}
if(ver_timer.under(msec))
{
const bool verified = ver_timer.run([&] {
return ver.verify_message(message, signature); });
if(!verified)
{
error_output() << "Correct signature rejected in PK signature bench\n";
}
const bool verified_bad = ver_timer.run([&] {
return ver.verify_message(message, bad_signature); });
if(verified_bad)
{
error_output() << "Bad signature accepted in PK signature bench\n";
}
}
}
output() << sig_timer;
output() << ver_timer;
}
#endif
#if defined(BOTAN_HAS_RSA)
void bench_rsa(const std::string& provider,
std::chrono::milliseconds msec)
{
for(size_t keylen : { 1024, 2048, 3072, 4096 })
{
const std::string nm = "RSA-" + std::to_string(keylen);
Timer keygen_timer(nm, provider, "keygen");
std::unique_ptr<Botan::Private_Key> key(keygen_timer.run([&] {
return new Botan::RSA_PrivateKey(rng(), keylen);
}));
output() << keygen_timer;
// Using PKCS #1 padding so OpenSSL provider can play along
bench_pk_enc(*key, nm, provider, "EME-PKCS1-v1_5", msec);
bench_pk_sig(*key, nm, provider, "EMSA-PKCS1-v1_5(SHA-1)", msec);
}
}
#endif
#if defined(BOTAN_HAS_ECDSA)
void bench_ecdsa(const std::string& provider,
std::chrono::milliseconds msec)
{
for(std::string grp : { "secp256r1", "secp384r1", "secp521r1" })
{
const std::string nm = "ECDSA-" + grp;
Timer keygen_timer(nm, provider, "keygen");
std::unique_ptr<Botan::Private_Key> key(keygen_timer.run([&] {
return new Botan::ECDSA_PrivateKey(rng(), grp);
}));
output() << keygen_timer;
bench_pk_sig(*key, nm, provider, "EMSA1(SHA-256)", msec);
}
}
#endif
#if defined(BOTAN_HAS_DIFFIE_HELLMAN)
void bench_dh(const std::string& provider,
std::chrono::milliseconds msec)
{
for(size_t bits : { 1024, 2048, 3072 })
{
const std::string grp = "modp/ietf/" + std::to_string(bits);
const std::string nm = "DH-" + std::to_string(bits);
Timer keygen_timer(nm, provider, "keygen");
std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
return new Botan::DH_PrivateKey(rng(), grp);
}));
std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
return new Botan::DH_PrivateKey(rng(), grp);
}));
output() << keygen_timer;
bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
}
}
#endif
#if defined(BOTAN_HAS_ECDH)
void bench_ecdh(const std::string& provider,
std::chrono::milliseconds msec)
{
for(std::string grp : { "secp256r1", "secp384r1", "secp521r1" })
{
const std::string nm = "ECDH-" + grp;
Timer keygen_timer(nm, provider, "keygen");
std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
return new Botan::ECDH_PrivateKey(rng(), grp);
}));
std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
return new Botan::ECDH_PrivateKey(rng(), grp);
}));
output() << keygen_timer;
bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
}
}
#endif
#if defined(BOTAN_HAS_CURVE_25519)
void bench_curve25519(const std::string& provider,
std::chrono::milliseconds msec)
{
const std::string nm = "Curve25519";
Timer keygen_timer(nm, provider, "keygen");
std::unique_ptr<Botan::PK_Key_Agreement_Key> key1(keygen_timer.run([&] {
return new Botan::Curve25519_PrivateKey(rng());
}));
std::unique_ptr<Botan::PK_Key_Agreement_Key> key2(keygen_timer.run([&] {
return new Botan::Curve25519_PrivateKey(rng());
}));
output() << keygen_timer;
bench_pk_ka(*key1, *key2, nm, provider, "KDF2(SHA-256)", msec);
}
#endif
};
BOTAN_REGISTER_COMMAND(Benchmark);
}
|