1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* XTEA
* (C) 1999-2009 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/xtea.h>
#include <botan/loadstor.h>
namespace Botan {
namespace {
void xtea_encrypt_4(const byte in[32], byte out[32], const u32bit EK[64])
{
u32bit L0, R0, L1, R1, L2, R2, L3, R3;
load_be(in, L0, R0, L1, R1, L2, R2, L3, R3);
for(size_t i = 0; i != 32; ++i)
{
L0 += (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[2*i];
L1 += (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[2*i];
L2 += (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[2*i];
L3 += (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[2*i];
R0 += (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[2*i+1];
R1 += (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[2*i+1];
R2 += (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[2*i+1];
R3 += (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[2*i+1];
}
store_be(out, L0, R0, L1, R1, L2, R2, L3, R3);
}
void xtea_decrypt_4(const byte in[32], byte out[32], const u32bit EK[64])
{
u32bit L0, R0, L1, R1, L2, R2, L3, R3;
load_be(in, L0, R0, L1, R1, L2, R2, L3, R3);
for(size_t i = 0; i != 32; ++i)
{
R0 -= (((L0 << 4) ^ (L0 >> 5)) + L0) ^ EK[63 - 2*i];
R1 -= (((L1 << 4) ^ (L1 >> 5)) + L1) ^ EK[63 - 2*i];
R2 -= (((L2 << 4) ^ (L2 >> 5)) + L2) ^ EK[63 - 2*i];
R3 -= (((L3 << 4) ^ (L3 >> 5)) + L3) ^ EK[63 - 2*i];
L0 -= (((R0 << 4) ^ (R0 >> 5)) + R0) ^ EK[62 - 2*i];
L1 -= (((R1 << 4) ^ (R1 >> 5)) + R1) ^ EK[62 - 2*i];
L2 -= (((R2 << 4) ^ (R2 >> 5)) + R2) ^ EK[62 - 2*i];
L3 -= (((R3 << 4) ^ (R3 >> 5)) + R3) ^ EK[62 - 2*i];
}
store_be(out, L0, R0, L1, R1, L2, R2, L3, R3);
}
}
/*
* XTEA Encryption
*/
void XTEA::encrypt_n(const byte in[], byte out[], size_t blocks) const
{
while(blocks >= 4)
{
xtea_encrypt_4(in, out, &(this->EK[0]));
in += 4 * BLOCK_SIZE;
out += 4 * BLOCK_SIZE;
blocks -= 4;
}
for(size_t i = 0; i != blocks; ++i)
{
u32bit L = load_be<u32bit>(in, 0);
u32bit R = load_be<u32bit>(in, 1);
for(size_t j = 0; j != 32; ++j)
{
L += (((R << 4) ^ (R >> 5)) + R) ^ EK[2*j];
R += (((L << 4) ^ (L >> 5)) + L) ^ EK[2*j+1];
}
store_be(out, L, R);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/*
* XTEA Decryption
*/
void XTEA::decrypt_n(const byte in[], byte out[], size_t blocks) const
{
while(blocks >= 4)
{
xtea_decrypt_4(in, out, &(this->EK[0]));
in += 4 * BLOCK_SIZE;
out += 4 * BLOCK_SIZE;
blocks -= 4;
}
for(size_t i = 0; i != blocks; ++i)
{
u32bit L = load_be<u32bit>(in, 0);
u32bit R = load_be<u32bit>(in, 1);
for(size_t j = 0; j != 32; ++j)
{
R -= (((L << 4) ^ (L >> 5)) + L) ^ EK[63 - 2*j];
L -= (((R << 4) ^ (R >> 5)) + R) ^ EK[62 - 2*j];
}
store_be(out, L, R);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/*
* XTEA Key Schedule
*/
void XTEA::key_schedule(const byte key[], size_t)
{
EK.resize(64);
secure_vector<u32bit> UK(4);
for(size_t i = 0; i != 4; ++i)
UK[i] = load_be<u32bit>(key, i);
u32bit D = 0;
for(size_t i = 0; i != 64; i += 2)
{
EK[i ] = D + UK[D % 4];
D += 0x9E3779B9;
EK[i+1] = D + UK[(D >> 11) % 4];
}
}
}
|