1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/*
* Skipjack
* (C) 1999-2007 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/skipjack.h>
#include <botan/internal/loadstor.h>
namespace Botan {
namespace {
/*
* Skipjack Stepping Rule 'A'
*/
void step_A(u16bit& W1, u16bit& W4, u32bit round, const byte FTAB[])
{
byte G1 = get_byte(0, W1), G2 = get_byte(1, W1), G3;
G3 = FTAB[((4*round-4)%10)*256 + G2] ^ G1;
G1 = FTAB[((4*round-3)%10)*256 + G3] ^ G2;
G2 = FTAB[((4*round-2)%10)*256 + G1] ^ G3;
G3 = FTAB[((4*round-1)%10)*256 + G2] ^ G1;
W1 = make_u16bit(G2, G3);
W4 ^= W1 ^ round;
}
/*
* Skipjack Stepping Rule 'B'
*/
void step_B(u16bit& W1, u16bit& W2, u32bit round, const byte FTAB[])
{
W2 ^= W1 ^ round;
byte G1 = get_byte(0, W1), G2 = get_byte(1, W1), G3;
G3 = FTAB[((4*round-4)%10)*256 + G2] ^ G1;
G1 = FTAB[((4*round-3)%10)*256 + G3] ^ G2;
G2 = FTAB[((4*round-2)%10)*256 + G1] ^ G3;
G3 = FTAB[((4*round-1)%10)*256 + G2] ^ G1;
W1 = make_u16bit(G2, G3);
}
/*
* Skipjack Invserse Stepping Rule 'A'
*/
void step_Ai(u16bit& W1, u16bit& W2, u32bit round, const byte FTAB[])
{
W1 ^= W2 ^ round;
byte G1 = get_byte(1, W2), G2 = get_byte(0, W2), G3;
G3 = FTAB[((4 * round - 1) % 10)*256 + G2] ^ G1;
G1 = FTAB[((4 * round - 2) % 10)*256 + G3] ^ G2;
G2 = FTAB[((4 * round - 3) % 10)*256 + G1] ^ G3;
G3 = FTAB[((4 * round - 4) % 10)*256 + G2] ^ G1;
W2 = make_u16bit(G3, G2);
}
/*
* Skipjack Invserse Stepping Rule 'B'
*/
void step_Bi(u16bit& W2, u16bit& W3, u32bit round, const byte FTAB[])
{
byte G1 = get_byte(1, W2), G2 = get_byte(0, W2), G3;
G3 = FTAB[((4 * round - 1) % 10)*256 + G2] ^ G1;
G1 = FTAB[((4 * round - 2) % 10)*256 + G3] ^ G2;
G2 = FTAB[((4 * round - 3) % 10)*256 + G1] ^ G3;
G3 = FTAB[((4 * round - 4) % 10)*256 + G2] ^ G1;
W2 = make_u16bit(G3, G2);
W3 ^= W2 ^ round;
}
}
/*
* Skipjack Encryption
*/
void Skipjack::encrypt_n(const byte in[], byte out[], u32bit blocks) const
{
for(u32bit i = 0; i != blocks; ++i)
{
u16bit W1 = load_le<u16bit>(in, 3);
u16bit W2 = load_le<u16bit>(in, 2);
u16bit W3 = load_le<u16bit>(in, 1);
u16bit W4 = load_le<u16bit>(in, 0);
step_A(W1, W4, 1, FTAB); step_A(W4, W3, 2, FTAB);
step_A(W3, W2, 3, FTAB); step_A(W2, W1, 4, FTAB);
step_A(W1, W4, 5, FTAB); step_A(W4, W3, 6, FTAB);
step_A(W3, W2, 7, FTAB); step_A(W2, W1, 8, FTAB);
step_B(W1, W2, 9, FTAB); step_B(W4, W1, 10, FTAB);
step_B(W3, W4, 11, FTAB); step_B(W2, W3, 12, FTAB);
step_B(W1, W2, 13, FTAB); step_B(W4, W1, 14, FTAB);
step_B(W3, W4, 15, FTAB); step_B(W2, W3, 16, FTAB);
step_A(W1, W4, 17, FTAB); step_A(W4, W3, 18, FTAB);
step_A(W3, W2, 19, FTAB); step_A(W2, W1, 20, FTAB);
step_A(W1, W4, 21, FTAB); step_A(W4, W3, 22, FTAB);
step_A(W3, W2, 23, FTAB); step_A(W2, W1, 24, FTAB);
step_B(W1, W2, 25, FTAB); step_B(W4, W1, 26, FTAB);
step_B(W3, W4, 27, FTAB); step_B(W2, W3, 28, FTAB);
step_B(W1, W2, 29, FTAB); step_B(W4, W1, 30, FTAB);
step_B(W3, W4, 31, FTAB); step_B(W2, W3, 32, FTAB);
store_le(out, W4, W3, W2, W1);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/*
* Skipjack Decryption
*/
void Skipjack::decrypt_n(const byte in[], byte out[], u32bit blocks) const
{
for(u32bit i = 0; i != blocks; ++i)
{
u16bit W1 = load_le<u16bit>(in, 3);
u16bit W2 = load_le<u16bit>(in, 2);
u16bit W3 = load_le<u16bit>(in, 1);
u16bit W4 = load_le<u16bit>(in, 0);
step_Bi(W2, W3, 32, FTAB); step_Bi(W3, W4, 31, FTAB);
step_Bi(W4, W1, 30, FTAB); step_Bi(W1, W2, 29, FTAB);
step_Bi(W2, W3, 28, FTAB); step_Bi(W3, W4, 27, FTAB);
step_Bi(W4, W1, 26, FTAB); step_Bi(W1, W2, 25, FTAB);
step_Ai(W1, W2, 24, FTAB); step_Ai(W2, W3, 23, FTAB);
step_Ai(W3, W4, 22, FTAB); step_Ai(W4, W1, 21, FTAB);
step_Ai(W1, W2, 20, FTAB); step_Ai(W2, W3, 19, FTAB);
step_Ai(W3, W4, 18, FTAB); step_Ai(W4, W1, 17, FTAB);
step_Bi(W2, W3, 16, FTAB); step_Bi(W3, W4, 15, FTAB);
step_Bi(W4, W1, 14, FTAB); step_Bi(W1, W2, 13, FTAB);
step_Bi(W2, W3, 12, FTAB); step_Bi(W3, W4, 11, FTAB);
step_Bi(W4, W1, 10, FTAB); step_Bi(W1, W2, 9, FTAB);
step_Ai(W1, W2, 8, FTAB); step_Ai(W2, W3, 7, FTAB);
step_Ai(W3, W4, 6, FTAB); step_Ai(W4, W1, 5, FTAB);
step_Ai(W1, W2, 4, FTAB); step_Ai(W2, W3, 3, FTAB);
step_Ai(W3, W4, 2, FTAB); step_Ai(W4, W1, 1, FTAB);
store_le(out, W4, W3, W2, W1);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/*
* Skipjack Key Schedule
*/
void Skipjack::key_schedule(const byte key[], u32bit)
{
static const byte F[256] = {
0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4, 0xB3, 0x21, 0x15, 0x78,
0x99, 0xB1, 0xAF, 0xF9, 0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E,
0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28, 0x0A, 0xDF, 0x02, 0xA0,
0x17, 0xF1, 0x60, 0x68, 0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53,
0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19, 0x7C, 0xAE, 0xE5, 0xF5,
0xF7, 0x16, 0x6A, 0xA2, 0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B,
0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8, 0x55, 0xB9, 0xDA, 0x85,
0x3F, 0x41, 0xBF, 0xE0, 0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90,
0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56,
0x6D, 0x98, 0x9B, 0x76, 0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20,
0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D, 0x42, 0xED, 0x9E, 0x6E,
0x49, 0x3C, 0xCD, 0x43, 0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18,
0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA, 0xC8, 0x74, 0xDC, 0xC9,
0x5D, 0x5C, 0x31, 0xA4, 0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87,
0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40, 0x34, 0x4B, 0x1C, 0x73,
0xD1, 0xC4, 0xFD, 0x3B, 0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5,
0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0, 0x29, 0x79, 0x71, 0x7E,
0xFF, 0x8C, 0x0E, 0xE2, 0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1,
0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8, 0x08, 0x77, 0x11, 0xBE,
0x92, 0x4F, 0x24, 0xC5, 0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC,
0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3, 0xBD, 0xA8, 0x3A, 0x01,
0x05, 0x59, 0x2A, 0x46 };
for(u32bit i = 0; i != 10; ++i)
for(u32bit j = 0; j != 256; ++j)
FTAB[256*i+j] = F[j ^ key[9-i]];
}
/*
* Clear memory of sensitive data
*/
void Skipjack::clear()
{
FTAB.clear();
}
}
|