1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* Noekeon in SIMD
* (C) 2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/noekeon_simd.h>
#include <botan/internal/simd_32.h>
namespace Botan {
/*
* Noekeon's Theta Operation
*/
#define NOK_SIMD_THETA(A0, A1, A2, A3, K0, K1, K2, K3) \
do { \
SIMD_32 T = A0 ^ A2; \
T ^= rotate_left(T, 8) ^ rotate_right(T, 8); \
A1 ^= T; \
A3 ^= T; \
\
A0 ^= K0; \
A1 ^= K1; \
A2 ^= K2; \
A3 ^= K3; \
\
T = A1 ^ A3; \
T ^= rotate_left(T, 8) ^ rotate_right(T, 8); \
A0 ^= T; \
A2 ^= T; \
} while(0)
/*
* Noekeon's Gamma S-Box Layer
*/
#define NOK_SIMD_GAMMA(A0, A1, A2, A3) \
do \
{ \
A1 ^= A3.andc(~A2); \
A0 ^= A2 & A1; \
\
SIMD_32 T = A3; \
A3 = A0; \
A0 = T; \
\
A2 ^= A0 ^ A1 ^ A3; \
\
A1 ^= A3.andc(~A2); \
A0 ^= A2 & A1; \
} while(0)
/*
* Noekeon Encryption
*/
void Noekeon_SIMD::encrypt_n(const byte in[], byte out[], u32bit blocks) const
{
const SecureVector<u32bit, 4>& EK = this->get_EK();
SIMD_32 K0 = SIMD_32(EK[0]);
SIMD_32 K1 = SIMD_32(EK[1]);
SIMD_32 K2 = SIMD_32(EK[2]);
SIMD_32 K3 = SIMD_32(EK[3]);
while(blocks >= 4)
{
SIMD_32 A0 = SIMD_32::load_be(in );
SIMD_32 A1 = SIMD_32::load_be(in + 16);
SIMD_32 A2 = SIMD_32::load_be(in + 32);
SIMD_32 A3 = SIMD_32::load_be(in + 48);
SIMD_32::transpose(A0, A1, A2, A3);
for(u32bit i = 0; i != 16; ++i)
{
A0 ^= SIMD_32(RC[i]);
NOK_SIMD_THETA(A0, A1, A2, A3, K0, K1, K2, K3);
A1.rotate_left(1);
A2.rotate_left(5);
A3.rotate_left(2);
NOK_SIMD_GAMMA(A0, A1, A2, A3);
A1.rotate_right(1);
A2.rotate_right(5);
A3.rotate_right(2);
}
A0 ^= SIMD_32(RC[16]);
NOK_SIMD_THETA(A0, A1, A2, A3, K0, K1, K2, K3);
SIMD_32::transpose(A0, A1, A2, A3);
A0.store_be(out);
A1.store_be(out + 16);
A2.store_be(out + 32);
A3.store_be(out + 48);
in += 64;
out += 64;
blocks -= 4;
}
if(blocks)
Noekeon::encrypt_n(in, out, blocks);
}
/*
* Noekeon Encryption
*/
void Noekeon_SIMD::decrypt_n(const byte in[], byte out[], u32bit blocks) const
{
const SecureVector<u32bit, 4>& DK = this->get_DK();
SIMD_32 K0 = SIMD_32(DK[0]);
SIMD_32 K1 = SIMD_32(DK[1]);
SIMD_32 K2 = SIMD_32(DK[2]);
SIMD_32 K3 = SIMD_32(DK[3]);
while(blocks >= 4)
{
SIMD_32 A0 = SIMD_32::load_be(in );
SIMD_32 A1 = SIMD_32::load_be(in + 16);
SIMD_32 A2 = SIMD_32::load_be(in + 32);
SIMD_32 A3 = SIMD_32::load_be(in + 48);
SIMD_32::transpose(A0, A1, A2, A3);
for(u32bit i = 0; i != 16; ++i)
{
NOK_SIMD_THETA(A0, A1, A2, A3, K0, K1, K2, K3);
A0 ^= SIMD_32(RC[16-i]);
A1.rotate_left(1);
A2.rotate_left(5);
A3.rotate_left(2);
NOK_SIMD_GAMMA(A0, A1, A2, A3);
A1.rotate_right(1);
A2.rotate_right(5);
A3.rotate_right(2);
}
NOK_SIMD_THETA(A0, A1, A2, A3, K0, K1, K2, K3);
A0 ^= SIMD_32(RC[0]);
SIMD_32::transpose(A0, A1, A2, A3);
A0.store_be(out);
A1.store_be(out + 16);
A2.store_be(out + 32);
A3.store_be(out + 48);
in += 64;
out += 64;
blocks -= 4;
}
if(blocks)
Noekeon::decrypt_n(in, out, blocks);
}
}
|