1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
/**
* AES-128 using Intel's AES-NI instructions
* (C) 2009 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/aes_intel.h>
#include <wmmintrin.h>
namespace Botan {
namespace {
__m128i aes_128_key_expansion(__m128i key, __m128i key_with_rcon)
{
key_with_rcon = _mm_shuffle_epi32(key_with_rcon, _MM_SHUFFLE(3,3,3,3));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
return _mm_xor_si128(key, key_with_rcon);
}
}
/**
* AES-128 Encryption
*/
void AES_128_Intel::encrypt_n(const byte in[], byte out[], u32bit blocks) const
{
const __m128i* in_mm = (const __m128i*)in;
__m128i* out_mm = (__m128i*)out;
const __m128i* key_mm = (const __m128i*)&EK[0];
__m128i K0 = _mm_loadu_si128(key_mm);
__m128i K1 = _mm_loadu_si128(key_mm + 1);
__m128i K2 = _mm_loadu_si128(key_mm + 2);
__m128i K3 = _mm_loadu_si128(key_mm + 3);
__m128i K4 = _mm_loadu_si128(key_mm + 4);
__m128i K5 = _mm_loadu_si128(key_mm + 5);
__m128i K6 = _mm_loadu_si128(key_mm + 6);
__m128i K7 = _mm_loadu_si128(key_mm + 7);
__m128i K8 = _mm_loadu_si128(key_mm + 8);
__m128i K9 = _mm_loadu_si128(key_mm + 9);
__m128i K10 = _mm_loadu_si128(key_mm + 10);
for(u32bit i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
B = _mm_xor_si128(B, K0);
B = _mm_aesenc_si128(B, K1);
B = _mm_aesenc_si128(B, K2);
B = _mm_aesenc_si128(B, K3);
B = _mm_aesenc_si128(B, K4);
B = _mm_aesenc_si128(B, K5);
B = _mm_aesenc_si128(B, K6);
B = _mm_aesenc_si128(B, K7);
B = _mm_aesenc_si128(B, K8);
B = _mm_aesenc_si128(B, K9);
B = _mm_aesenclast_si128(B, K10);
_mm_storeu_si128(out_mm + i, B);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/**
* AES-128 Decryption
*/
void AES_128_Intel::decrypt_n(const byte in[], byte out[], u32bit blocks) const
{
const __m128i* in_mm = (const __m128i*)in;
__m128i* out_mm = (__m128i*)out;
const __m128i* key_mm = (const __m128i*)&DK[0];
__m128i K0 = _mm_loadu_si128(key_mm);
__m128i K1 = _mm_loadu_si128(key_mm + 1);
__m128i K2 = _mm_loadu_si128(key_mm + 2);
__m128i K3 = _mm_loadu_si128(key_mm + 3);
__m128i K4 = _mm_loadu_si128(key_mm + 4);
__m128i K5 = _mm_loadu_si128(key_mm + 5);
__m128i K6 = _mm_loadu_si128(key_mm + 6);
__m128i K7 = _mm_loadu_si128(key_mm + 7);
__m128i K8 = _mm_loadu_si128(key_mm + 8);
__m128i K9 = _mm_loadu_si128(key_mm + 9);
__m128i K10 = _mm_loadu_si128(key_mm + 10);
for(u32bit i = 0; i != blocks; ++i)
{
__m128i B = _mm_loadu_si128(in_mm + i);
B = _mm_xor_si128(B, K0);
B = _mm_aesdec_si128(B, K1);
B = _mm_aesdec_si128(B, K2);
B = _mm_aesdec_si128(B, K3);
B = _mm_aesdec_si128(B, K4);
B = _mm_aesdec_si128(B, K5);
B = _mm_aesdec_si128(B, K6);
B = _mm_aesdec_si128(B, K7);
B = _mm_aesdec_si128(B, K8);
B = _mm_aesdec_si128(B, K9);
B = _mm_aesdeclast_si128(B, K10);
_mm_storeu_si128(out_mm + i, B);
in += BLOCK_SIZE;
out += BLOCK_SIZE;
}
}
/**
* AES-128 Key Schedule
*/
void AES_128_Intel::key_schedule(const byte key[], u32bit)
{
const __m128i* key_mm = (const __m128i*)key;
#define AES_128_key_exp(K, RCON) \
aes_128_key_expansion(K, _mm_aeskeygenassist_si128(K, RCON))
__m128i K0 = _mm_loadu_si128(key_mm);
__m128i K1 = AES_128_key_exp(K0, 0x01);
__m128i K2 = AES_128_key_exp(K1, 0x02);
__m128i K3 = AES_128_key_exp(K2, 0x04);
__m128i K4 = AES_128_key_exp(K3, 0x08);
__m128i K5 = AES_128_key_exp(K4, 0x10);
__m128i K6 = AES_128_key_exp(K5, 0x20);
__m128i K7 = AES_128_key_exp(K6, 0x40);
__m128i K8 = AES_128_key_exp(K7, 0x80);
__m128i K9 = AES_128_key_exp(K8, 0x1B);
__m128i K10 = AES_128_key_exp(K9, 0x36);
__m128i* EK_mm = (__m128i*)&EK[0];
_mm_storeu_si128(EK_mm , K0);
_mm_storeu_si128(EK_mm + 1, K1);
_mm_storeu_si128(EK_mm + 2, K2);
_mm_storeu_si128(EK_mm + 3, K3);
_mm_storeu_si128(EK_mm + 4, K4);
_mm_storeu_si128(EK_mm + 5, K5);
_mm_storeu_si128(EK_mm + 6, K6);
_mm_storeu_si128(EK_mm + 7, K7);
_mm_storeu_si128(EK_mm + 8, K8);
_mm_storeu_si128(EK_mm + 9, K9);
_mm_storeu_si128(EK_mm + 10, K10);
// Now generate decryption keys
__m128i* DK_mm = (__m128i*)&DK[0];
_mm_storeu_si128(DK_mm , K10);
_mm_storeu_si128(DK_mm + 1, _mm_aesimc_si128(K9));
_mm_storeu_si128(DK_mm + 2, _mm_aesimc_si128(K8));
_mm_storeu_si128(DK_mm + 3, _mm_aesimc_si128(K7));
_mm_storeu_si128(DK_mm + 4, _mm_aesimc_si128(K6));
_mm_storeu_si128(DK_mm + 5, _mm_aesimc_si128(K5));
_mm_storeu_si128(DK_mm + 6, _mm_aesimc_si128(K4));
_mm_storeu_si128(DK_mm + 7, _mm_aesimc_si128(K3));
_mm_storeu_si128(DK_mm + 8, _mm_aesimc_si128(K2));
_mm_storeu_si128(DK_mm + 9, _mm_aesimc_si128(K1));
_mm_storeu_si128(DK_mm + 10, K0);
}
/**
* Clear memory of sensitive data
*/
void AES_128_Intel::clear()
{
EK.clear();
DK.clear();
}
}
|